Skip to main content

Trimmed Data-Driven Evolutionary Optimization Using Selective Surrogate Ensembles

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1363))

Abstract

Data-driven evolutionary algorithms (DDEAs) have attracted much attention in recent years, due to their effectiveness and advantages in solving expensive and complex optimization problems. In an offline data-driven evolutionary algorithm, no additional information is available to update surrogate models, so we need to ensure the quality of the surrogate models built before optimization. Based on the offline data-driven evolutionary algorithm using selective surrogate ensembles (DDEA-SE), we propose a trimmed bagging based DDEA-SE (TDDEA-SE) to construct a more accurate model pool. To this end, we use trimmed bagging to prune models with large errors calculated by out-of-bag samples, thus improving the accuracy of the selective surrogate ensembles and promoting the optimization. The experimental results on benchmark problems show that the proposed algorithm can strike a balance between diversity and accuracy of models, and its competitiveness on solving offline data-driven optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin, Y.C.: Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)

    Article  Google Scholar 

  2. Vikhar, P.A.: Evolutionary algorithms: A critical review and its future prospects. In: International Conference on Global Trends in Signal Processing, Information Computing and Communication, ICGTSPICC 2016, 22–24 December, Jalgaon, India, pp. 261–265 (2016)

    Google Scholar 

  3. Pan, L.Q., Li, L.H., He, C., et al.: A subregion division-based evolutionary algorithm with effective mating selection for many-objective optimization. IEEE Trans. Cybern. 50(8), 3477–3490 (2020)

    Article  Google Scholar 

  4. Pan, L.Q., Li, L.H., He, C., et al.: Manifold learning-inspired mating restriction for evolutionary multiobjective optimization with complicated pareto sets. IEEE Trans. Cybern. 1–13 (2019). https://doi.org/10.1109/TCYB.2019.2952881

  5. Wang, H.D., Jin, Y.C., Doherty, J.: Committee-based active learning for surrogate-assisted particle swarm optimization of expensive problems. IEEE Trans. Cybern. 47(9), 2664–2677 (2017)

    Article  Google Scholar 

  6. Nguyen, S., Zhang, M.J., Johnston, M., et al.: Automatic programming via iterated local search for dynamic job shop scheduling. IEEE Trans. Cybern. 45(1), 1–14 (2015)

    Article  Google Scholar 

  7. Wang, S., Liu, J., Jin, Y.C.: Surrogate-assisted robust optimization of large-scale networks based on graph embedding. IEEE Trans. Evol. Comput. 24(4), 735–749 (2020)

    Article  MathSciNet  Google Scholar 

  8. Guo, D., Chai, T.Y., Ding, J., et al.: Small data driven evolutionary multi-objective optimization of fused magnesium furnaces. In: IEEE Symposium Series on Computational Intelligence, IEEE SSCI 2016, 6–9 December, Athens, Greece, pp. 1–8 (2016)

    Google Scholar 

  9. Lian, Y.S., Liou, M.S.: Multiobiective optimization using coupled response surface model and evolutionary algorithm. AIAA J. 43(6), 1316–1325 (2005)

    Article  Google Scholar 

  10. Liu, B., Zhang, Q.F., Gielen, G., et al.: A gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems. IEEE Trans. Evol. Comput. 18(2), 180–192 (2014)

    Article  Google Scholar 

  11. Wang, H.D., Jin, Y.C., Sun, C.L., et al.: Offline data-driven evolutionary optimization using selective surrogate ensembles. IEEE Trans. Evol. Comput. 23(2), 203–216 (2019)

    Article  Google Scholar 

  12. Sun, C.L., Jin, Y.C., Cheng, R., et al.: Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems. IEEE Trans. Evol. Comput. 21(4), 644–660 (2017)

    Article  Google Scholar 

  13. Pan, L.Q., He, C., Tian, Y., et al.: A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization. IEEE Trans. Evol. Comput. 23(1), 74–88 (2019)

    Article  Google Scholar 

  14. Jin, Y.C., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with approximate fitness functions. IEEE Trans. Evol. Comput. 6(5), 481–494 (2002)

    Article  Google Scholar 

  15. Li, J.Y., Zhan, Z.H., Wang, C., et al.: Boosting data-driven evolutionary algorithm with localized data generation. IEEE Trans. Evol. Comput. (2020, to be published). https://doi.org/10.1109/TEVC.2020.2979740

  16. Yang, C.E., Ding, J.L., Jin, Y.C., et al.: Offline data-driven multiobjective optimization: knowledge transfer between surrogates and generation of final solutions. IEEE Trans. Evol. Comput. 24(3), 409–423 (2020)

    Google Scholar 

  17. Croux, C., Jooseens, K., Lemmensb, A.: Trimmed bagging. Comput. Stat. Data Anal. 52(1), 362–368 (2007)

    Article  MathSciNet  Google Scholar 

  18. Zhang, H., Song, Y.J., Jiang, B., et al.: Two-stage bagging pruning for reducing the ensemble size and improving the classification performance. Math. Prob. Eng. 5(3), 1–17 (2019)

    Google Scholar 

  19. Moreira, J.M., Soares, C., Jorge, A.M., et al.: Ensemble approaches for regression: a survey. ACM Comput. Surv. 45(1), 1–40 (2012)

    Article  Google Scholar 

  20. Zhang, C.X., Guo, G.: Research of the applications of out-of-bag sample. Software 32(3), 1–4 (2011)

    Google Scholar 

  21. Bylander, T.: Estimating generalization error on two class datasets using out-of-bag estimates. Mach. Learn. 48(1), 287–297 (2002)

    Article  Google Scholar 

  22. Rao, J.S., Tibshirant, R.: The out-of-bootstrap method for model averaging and selection. Technical report, Cleveland Clinic and University of Toronto (997)

    Google Scholar 

  23. Derrac, J., Garcia, S., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R and D Program of China for International S and T Cooperation Projects (2017YFE0103900), China Postdoctoral Science Foundation (2020M672359) and the Fundamental Research Funds for the Central Universities (HUST: 2019kfyXMBZ056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shan, Y., Hou, Y., Wang, M., Xu, F. (2021). Trimmed Data-Driven Evolutionary Optimization Using Selective Surrogate Ensembles. In: Pan, L., Pang, S., Song, T., Gong, F. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2020. Communications in Computer and Information Science, vol 1363. Springer, Singapore. https://doi.org/10.1007/978-981-16-1354-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1354-8_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1353-1

  • Online ISBN: 978-981-16-1354-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics