Skip to main content

Multiobjective Brainstorm Optimization with Diversity Preservation Mechanism for Nonlinear Equation Systems

  • Conference paper
  • First Online:
  • 634 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1363))

Abstract

In many fields of engineering and science, it is necessary to solve nonlinear equation systems (NESs). When using multiobjective optimization to solve NESs, there are two problems: 1) how to transform an NES into a multiobjective optimization problem and 2) how to design an algorithm to solve the transformed problems. In this work, we propose a multilayer bi-objective transformation technique, which can transform an NES into a bi-objective optimization problem, and it overcomes the curse of dimensionality and the problem of missing roots caused by the decrease of solutions discernibility in previous transformation techniques. Then, combining the multilayer bi-objective transformation technique, we design a multiobjective brainstorm optimization with a diversity preservation mechanism, which can effectively locate multiple roots of NESs in a single run. Compared with several state-of-art methods on 30 NESs with different features, our approach provides very competitive performance with the highest root ratio and success ratio.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amaya, I., Cruz, J., Correa, R.: Solution of the mathematical model of a nonlinear direct current circuit using particle swarm optimization. Dyna 79(172), 77–84 (2012)

    Google Scholar 

  2. Brits, R., Engelbrecht, A.P., Van den Bergh, F.: A niching particle swarm optimizer. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning, vol. 2, pp. 692–696. Orchid Country Club, Singapore (2002)

    Google Scholar 

  3. Chen, C.Y.: A performance comparison of the zero-finding by extended interval newton method for peano monosplines. Appl. Math. Comput. 219(12), 6919–6930 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Emiris, I.Z., Mourrain, B.: Computer algebra methods for studying and computing molecular conformations. Algorithmica 25(2–3), 372–402 (1999)

    Article  MathSciNet  Google Scholar 

  5. Enjeti, P., Lindsay, J.: Solving nonlinear equations of harmonic elimination PWM in power control. Electron. Lett. 23(12), 656–657 (1987)

    Article  Google Scholar 

  6. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Ann. Oper. Res. 175(1), 177–211 (2010)

    Article  MathSciNet  Google Scholar 

  7. Floudas, C.A.: Recent advances in global optimization for process synthesis, design and control: enclosure of all solutions. Comput. Chem. Eng. 23, S963–S973 (1999)

    Article  Google Scholar 

  8. Gong, W., Wang, Y., Cai, Z., Wang, L.: Finding multiple roots of nonlinear equation systems via a repulsion-based adaptive differential evolution. IEEE Transactions on Systems, Man, and Cybernetics: Systems (2018)

    Google Scholar 

  9. Gong, W., Wang, Y., Cai, Z., Yang, S.: A weighted biobjective transformation technique for locating multiple optimal solutions of nonlinear equation systems. IEEE Trans. Evol. Comput. 21(5), 697–713 (2017)

    Article  Google Scholar 

  10. Grosan, C., Abraham, A.: A new approach for solving nonlinear equations systems. IEEE Trans. Syst. Man Cybernet. Part A: Syst. Hum. 38(3), 698–714 (2008)

    Article  Google Scholar 

  11. Guo, D., Nie, Z., Yan, L.: The application of noise-tolerant ZD design formula to robots’ kinematic control via time-varying nonlinear equations solving. IEEE Trans. Syst. Man Cybernet. Syst. 48(12), 2188–2197 (2017)

    Article  Google Scholar 

  12. He, W., Gong, W., Wang, L., Yan, X., Hu, C.: Fuzzy neighborhood-based differential evolution with orientation for nonlinear equation systems. Knowl. Based Syst. 182, 104796 (2019)

    Google Scholar 

  13. Henderson, N., Sacco, W.F., Platt, G.M.: Finding more than one root of nonlinear equations via a polarization technique: an application to double retrograde vaporization. Chem. Eng. Res. Des. 88(5–6), 551–561 (2010)

    Article  Google Scholar 

  14. Karr, C.L., Weck, B., Freeman, L.M.: Solutions to systems of nonlinear equations via a genetic algorithm. Eng. Appl. Artif. Intell. 11(3), 369–375 (1998)

    Article  Google Scholar 

  15. Li, X., Engelbrecht, A., Epitropakis, M.G.: Benchmark functions for cec’2013 special session and competition on niching methods for multimodal function optimization. RMIT University, Evolutionary Computation and Machine Learning Group, Australia, Technical report (2013)

    Google Scholar 

  16. Liao, Z., Gong, W., Yan, X., Wang, L., Hu, C.: Solving nonlinear equations system with dynamic repulsion-based evolutionary algorithms. IEEE Trans. Syst. Man Cybernet. Syst. (2018)

    Google Scholar 

  17. Mehta, D.: Finding all the stationary points of a potential-energy landscape via numerical polynomial-homotopy-continuation method. Phys. Rev. E 84(2), 025702 (2011)

    Google Scholar 

  18. Mehta, D., Grosan, C.: A collection of challenging optimization problems in science, engineering and economics. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 2697–2704. IEEE (2015)

    Google Scholar 

  19. Pan, L., He, C., Tian, Y., Wang, H., Zhang, X., Jin, Y.: A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization. IEEE Trans. Evol. Comput. 23(1), 74–88 (2018)

    Article  Google Scholar 

  20. Pan, L., Li, L., Cheng, R., He, C., Tan, K.C.: Manifold learning-inspired mating restriction for evolutionary multiobjective optimization with complicated pareto sets. IEEE Trans. Cybern. (2019)

    Google Scholar 

  21. Pan, L., Li, L., He, C., Tan, K.C.: A subregion division-based evolutionary algorithm with effective mating selection for many-objective optimization. IEEE Trans. Cybern. (2019)

    Google Scholar 

  22. Pinter, J.: Solving nonlinear equation systems via global partition and search: some experimental results. Computing 43(4), 309–323 (1990)

    Article  MathSciNet  Google Scholar 

  23. Pourjafari, E., Mojallali, H.: Solving nonlinear equations systems with a new approach based on invasive weed optimization algorithm and clustering. Swarm Evol. Comput. 4, 33–43 (2012)

    Article  Google Scholar 

  24. Press, W.H., Teukolsky, S.A., Flannery, B.P., Vetterling, W.T.: Numerical recipes in Fortran 77: volume 1, volume 1 of Fortran numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  25. Qin, S., Zeng, S., Dong, W., Li, X.: Nonlinear equation systems solved by many-objective hype. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 2691–2696. IEEE (2015)

    Google Scholar 

  26. Qu, B.Y., Suganthan, P.N., Liang, J.J.: Differential evolution with neighborhood mutation for multimodal optimization. IEEE Trans. Evol. Comput. 16(5), 601–614 (2012)

    Article  Google Scholar 

  27. Ramos, H., Monteiro, M.T.T.: A new approach based on the newton’s method to solve systems of nonlinear equations. J. Comput. Appl. Math. 318, 3–13 (2017)

    Article  MathSciNet  Google Scholar 

  28. Schwandt, H.: Parallel interval newton-like Schwarz methods for almost linear parabolic problems. J. Comput. Appl. Math. 199(2), 437–444 (2007)

    Article  MathSciNet  Google Scholar 

  29. Shi, Y.: An optimization algorithm based on brainstorming process. In: Emerging Research on Swarm Intelligence and Algorithm Optimization, pp. 1–35. IGI Global (2015)

    Google Scholar 

  30. Song, W., Wang, Y., Li, H.X., Cai, Z.: Locating multiple optimal solutions of nonlinear equation systems based on multiobjective optimization. IEEE Trans. Evol. Comput. 19(3), 414–431 (2014)

    Article  Google Scholar 

  31. Tsoulos, I., Stavrakoudis, A.: On locating all roots of systems of nonlinear equations inside bounded domain using global optimization methods. Nonlinear Anal. Real World Appl. 11(4), 2465–2471 (2010)

    Article  MathSciNet  Google Scholar 

  32. Wang, C., Luo, R., Wu, K., Han, B.: A new filled function method for an unconstrained nonlinear equation. J. Comput. Appl. Math. 235(6), 1689–1699 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zelin Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Y., Zhu, Z. (2021). Multiobjective Brainstorm Optimization with Diversity Preservation Mechanism for Nonlinear Equation Systems. In: Pan, L., Pang, S., Song, T., Gong, F. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2020. Communications in Computer and Information Science, vol 1363. Springer, Singapore. https://doi.org/10.1007/978-981-16-1354-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1354-8_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1353-1

  • Online ISBN: 978-981-16-1354-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics