Skip to main content

Predictive Maintenance for Sensor Enhancement in Industry 4.0

  • Conference paper
  • First Online:
Book cover Recent Challenges in Intelligent Information and Database Systems (ACIIDS 2021)

Abstract

This paper presents an effort to timely handle 400+ GBytes of sensor data in order to produce Predictive Maintenance (PdM) models. We follow a data-driven methodology, using state-of-the-art python libraries, such as Dask and Modin, which can handle big data. We use Dynamic Time Warping for sensors behavior description, an anomaly detection method (Matrix Profile) and forecasting methods (AutoRegressive Integrated Moving Average - ARIMA, Holt-Winters and Long Short-Term Memory - LSTM). The data was collected by various sensors in an industrial context and is composed by attributes that define their activity characterizing the environment where they are inserted, e.g. optical, temperature, pollution and working hours. We successfully managed to highlight aspects of all sensors behaviors, and produce forecast models for distinct series of sensors, despite the data dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/modin-project/modin.

  2. 2.

    https://rapids.ai.

  3. 3.

    https://parquet.apache.org.

References

  1. Abid, K., Sayed Mouchaweh, M., Cornez, L.: Fault prognostics for the predictive maintenance of wind turbines: state of the art. In: Monreale, A., et al. (eds.) ECML PKDD 2018. CCIS, vol. 967, pp. 113–125. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14880-5_10

    Chapter  Google Scholar 

  2. Benschoten, A.H.V., Ouyang, A., Bischoff, F., Marrs, T.W.: MPA: a novel cross-language API for time series analysis. J. Open Sour. Softw. 5(49), 2179 (2020)

    Article  Google Scholar 

  3. Carvalho, T.P., Soares, F.A.A.M.N., Vita, R., Francisco, R.D.P., Basto, J.P., Alcalá, S.G.S.: A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 137, 106024 (2019)

    Google Scholar 

  4. Compare, M., Baraldi, P., Zio, E.: Challenges to IoT-enabled predictive maintenance for industry 4.0. IEEE Internet Things J. 7(5), 4585–4597 (2020)

    Article  Google Scholar 

  5. Cryer, J.D., Chan, K.S.: Time Series Analysis With Applications in R. Springer, Heidelberg (2008). https://doi.org/10.1007/978-0-387-75959-3

    Book  MATH  Google Scholar 

  6. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press, Cambridge (2017)

    MATH  Google Scholar 

  7. Hashemian, H.M., Bean, W.C.: State-of-the-art predictive maintenance techniques. IEEE Trans. Instrum. Meas. 60(10), 3480–3492 (2011)

    Article  Google Scholar 

  8. Him, L.C., Poh, Y.Y., Pheng, L.W.: IoT-based predictive maintenance for smart manufacturing systems. In: 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 1942–1944 (2019)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Kanawaday, A., Sane, A.: Machine learning for predictive maintenance of industrial machines using IoT sensor data. In: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 87–90 (2017)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)

    Google Scholar 

  12. Naskos, A., Kougka, G., Toliopoulos, T., Gounaris, A., Vamvalis, C., Caljouw, D.: Event-based predictive maintenance on top of sensor data in a real industry 4.0 case study. In: Cellier, P., Driessens, K. (eds.) ECML PKDD 2019. CCIS, vol. 1168, pp. 345–356. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43887-6_28

    Chapter  Google Scholar 

  13. Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., Loncarski, J.: Machine learning approach for predictive maintenance in industry 4.0. In: 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), pp. 1–6 (2018)

    Google Scholar 

  14. Rakthanmanon, T., et al.: Searching and mining trillions of time series subsequences under dynamic time warping. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2012, pp. 262–270. Association for Computing Machinery, New York (2012)

    Google Scholar 

  15. Raschka, S., Patterson, J., Nolet, C.: Machine learning in python: main developments and technology trends in data science, machine learning, and artificial intelligence. Information 11(4), 193 (2020)

    Article  Google Scholar 

  16. Rocklin, M.: Dask: parallel computation with blocked algorithms and task scheduling. In: Proceedings of the 14th Python in Science Conference, pp. 130–136 (2015)

    Google Scholar 

  17. Stetco, A., et al.: Machine learning methods for wind turbine condition monitoring: a review. Renew. Energy 133, 620–635 (2019)

    Article  Google Scholar 

  18. Zhu, Y., Zhao, Y., Zhang, J., Geng, N., Huang, D.: Spring onion seed demand forecasting using a hybrid holt-winters and support vector machine model. PLOS One 14(7), 1–18 (2019)

    Google Scholar 

Download references

Acknowledgments

This paper is a result of the project Safe Cities - Inovação para Construir Cidades Seguras, with the reference POCI-01-0247-FEDER-041435, co-funded by the European Regional Development Fund (ERDF), through the Operational Programme for Competitiveness and Internationalization (COMPETE 2020), under the PORTUGAL 2020 Partnership Agreement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carla Silva , Marvin F. da Silva or Inês Dutra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, C. et al. (2021). Predictive Maintenance for Sensor Enhancement in Industry 4.0. In: Hong, TP., Wojtkiewicz, K., Chawuthai, R., Sitek, P. (eds) Recent Challenges in Intelligent Information and Database Systems. ACIIDS 2021. Communications in Computer and Information Science, vol 1371. Springer, Singapore. https://doi.org/10.1007/978-981-16-1685-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1685-3_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1684-6

  • Online ISBN: 978-981-16-1685-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics