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Abstract. Colorectal cancer is a leading cause of cancer death for both
men and women. For this reason, histo-pathological characterization of
colorectal polyps is the major instrument for the pathologist in order to
infer the actual risk for cancer and to guide further follow-up. Colorectal
polyps diagnosis includes the evaluation of the polyp type, and more
importantly, the grade of dysplasia. This latter evaluation represents
a critical step for the clinical follow-up. The proposed deep learning-
based classification pipeline is based on state-of-the-art convolutional
neural network, trained using proper countermeasures to tackle WSI high
resolution and very imbalanced dataset. The experimental results show
that one can successfully classify adenomas dysplasia grade with 70%
accuracy, which is in line with the pathologists’ concordance.

Keywords: Deep Learning, Multi Resolution, Colorectal Polyps, Col-
orectal Adenomas, Digital Pathology

1 Introduction

The cornerstone of conventional histo-pathological examination is the evaluation
of hematoxylin & eosin slides by trained pathologists to detect and/or quantify
specific features or patterns and provide a diagnostic evaluation. Based on this
premise, whole slide image (WSI) analysis approaches based on Deep Learning
(DL) are well suited to address the tasks posed by the histo-pathological evalua-
tion [15]. During the last few years, many specific challenges have been tackled:
from lymph node metastasis detection [3] to mitotic count [1]. The main aims
of these approaches are multiple: i) improve pathologists’ accuracy and thus
diagnostic sensitivity; ii) speed-up the diagnostic workflow by addressing more
menial, but time-consuming tasks; iii) improve diagnostic agreement by adopt-
ing standardized criteria.
Among the multiple fields of surgical pathology, gastrointestinal pathology is one
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of the most represented [11], thus addressing this specific topic has the potential
of significantly affecting the overall workflow of a pathology service. Colorectal
polyps, pre-malignant lesions arising from the intestinal epithelium, are one of
the most common gastrointestinal specimens submitted to histological examina-
tion. These lesions are usually collected during a colonoscopy, which represents
the mainstay of colorectal cancer screening programs in many countries [4]. The
development of these programs leads to a significant increase in this specific
caseload of surgical pathology laboratories: the correct diagnostic assessment
has far-reached consequences both for the patient and the public health sys-
tems. Indeed, a correct diagnosis is obviously important for the management of
the patient, but it is now well acknowledged that different types of polyps are
associated with different risks of developing metachronous invasive carcinomas
during the following years [14]. For this reason, specific algorithms have been
established for tailoring patients’ follow-up. Despite such clinical relevance, the
concordance rates even among expert pathologists, in the diagnostic assessment
of colorectal polyps, is far from optimal [9,10,20,24]. Although the distinction
between non-adenomatous and adenomatous tissue is usually reliable, the inter-
observer agreement between different histological types and dysplasia grades are
sub-optimal. For instance, the concordance in assessing a tubulo-villous polyp
or low grade dysplasia ranged around 70%.
In this work the main contributions are: i) the design of a deep learning pipeline
to tackle the high dimensionality of WSI, working at single patches level; ii) the
study on the physical resolutions suitable to deal automatically with the prob-
lem of classification of different colorectal polyps; iii) the study of different patch
pre-processing approaches, where we find that, for the considered problem, the
intensity of the dye present in the scans is the most informative feature of the
tissue images.

2 Related work

Only a limited number of works explored histo-pathological examination through
deep learning-based analysis of digital whole slide images [16,23,25]. Among
these works, Korbar et al. [13] present a crop-based framework, developed us-
ing a ResNet architecture to classify different types of colorectal polyps from
whole-slide images. This work provides empirical suggestions the residual net-
work architecture achieves better performance than other models. Following their
previous work, Korbar et al. introduce a revised version of Grad-CAM (gradi-
ent driven class activation mapping) [22] to visualize the attention map of the
network for the annotated whole-slide [16]. Bychkov et al. [5] apply different
architectures (convolutional and recurrent neural networks) in order to predict
five-years disease survival probabilities for colorectal cancer and estimate the
individual risk. This work explores the idea of using spatial information by feed-
ing an LSTM network with the features extracted from image crops by a CNN.
Recently, Wei et al. [25] propose an analysis model for annotated tissue and
perform a study on the generalization of neural models with external medical
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HP NORM TA.HG TA.LG TVA.HG TVA.LG Total

Slides 62 30 34 232 44 55 457
Rt 158 112 145 777 264 245 1701

At

[
cm2

]
9.91 18.38 7.94 71.74 60.45 41.86 210.29

Table 1: Dataset composition.

institutions. In such work, a hierarchical evaluation mechanism is proposed to
extend the classification of tissue fragments to the entire slide.
These efforts show promising results, but the testing data size is small and, most
importantly, they do not provide diagnosis based on both histological type and
dysplasia grade. Our aim is thus to evaluate the efficacy of a deep neural network
for the automatic histo-pathological classification of colorectal polyps employing
a large training cohort and assessing both polyp histological type and dyspla-
sia grade. Barbano et al. [2] shows how an hierarchical DL model for annotated
tissue can take care of both colorectal polyps’ type and relative dysplasia degree.

3 Dataset

WSI composing the dataset are collected within the CE project DeepHealth [8].
This dataset contains all source WSI for UniToPatho [6] plus newer data. Here
we analyze 457 WSI from colorectal cancer screening-undergoing patients. Slide
scanning is obtained through a Hamamatsu Nanozoomer S210 scanner config-
ured at ×20 magnification (0.4415 µm/px) and stored as .ndpi file. Each WSI
has been annotated by expert pathologists according to six classes chosen for
our study: hyperplastic polyp (HP); normal tissue (NORM); tubular adenoma,
high-grade dysplasia (TA.HG); tubular adenoma, low-grade dysplasia (TA.LG);
tubulo-villous adenoma, high-grade dysplasia (TVA.HG) and tubulo-villous ade-
noma, low-grade dysplasia (TVA.LG).
Each slide is associated with some metadata (stored in NanoZoomer Digital
Pathology Annotations .ndpa file format), including a collection of Region of
Interests (RoIs) associated with the corresponding class. Each RoI is determined
by the pathologist and is defined by a free-hand contour, identifying the tissue
area exhibiting histological findings. The number and the size of RoIs is highly
variable and depends on both the tissue availability and the histological analysis.
Such heterogeneity unfortunately, leads to dataset unbalancing: the distribution
of the data from T tissue classes in our dataset is shown in Tab. 1. In the table
we read the number of WSIs, the number of ROIs R and total tissue area At for
each t-th class, respectively.

4 Method

In this section we are going to describe and motivate the proposed method. In
particular, the use of deep learning for classification already proved, in similar
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RoI Slicing in patches Neural network model

Prediction on
patch#1

WSI Patches pre-processing

Prediction on
patch#2

Prediction on
patch#N

...  ...  ...

Prediction on
RoI WSI

Fig. 1: The neural network is trained on RoI images (gears symbol) and tested on WSI
(lock symbol).

HP NORM TA.HG TA.LG TVA.HG TVA.LG Total

Train Slides 50 25 26 203 36 45 385
Test Slides 12 5 8 29 8 10 72

Train RoIs 133 98 113 695 240 208 1487
Validation RoIs 5 5 5 5 5 5 30

Test RoIs 20 9 27 77 19 32 184

Table 2: Dataset composition. Test RoIs are taken from a disjoint set of slides.

learning tasks, to be extremely effective and robust [16,25]. Direct classification
on the (high resolution) whole slide, in our context, is unfeasible: the relevant
features are local and can be detected at very low image scale. For this reason, the
deep learning model is not trained on the full slides, but on some crops we refer
to as patches. An high-level representation of our approach is depicted in Fig. 1.
Once the model is trained on patches’ classification, in order to get the whole slide
classification (at validation/test time), all the scores from the single patches are
averaged on the whole slide. WSIs have large resolution and need to be cropped
into patches. The first operation we perform on RoIs (even before slicing them
into patches) is re-scaling them to some target resolution ϕ.using the Lancos-3
filter. Then, we slice the RoIs/WSIs into patches (224× 224 pixels large) using
sliding windows. These patches can be immediately normalized, using approaches
like [18], or simply converting in gray-scale to reduce the expected color shift
caused by hematoxylin and eosin.
During training we augment data: we include vertical/horizontal flips and a
random operation chosen between rotation, equalization, solarization, inversion
and contrast enhancing, as proposed in [7].
In order to perform classification on the patches, we have used ResNet-18: it
represents a good trade-off between complexity and performance and is one of
the broadly-used to solve similar tasks [16,25]. Pre-trained deep neural networks
(on the ImageNet classification task) can be effectively used as initialization for
medical classification tasks, showing good performance [16]. 3

3 The pre-trained model used in all the experiments is available at https://pytorch.
org/docs/stable/torchvision/models.html

https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
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5 Results

In this section we show and discuss the classification results obtained on the
WSI biopsies dataset described in Sec. 3 with the method proposed in Sec. 4.
We can easily expect high error rates, considering that the information about the
adenoma type is a visually global information and requires features extracted at
different scale than those for the dysplasia grade, which is a more local informa-
tion. Here we are not interested in distinguishing different adenoma types, but
their dysplasia grade. Towards this end, we will follow a hierarchical-like clas-
sification approach [26,27], grouping the adenoma classes into high grade (HG)
and low grade (LG) dysplasia.
For all the experiments, we split the data at the whole slide level, in order to
maintain the separation of tissues from different patients. For each class, 10%
of total patients are considered as test set. We summarise the data split in Ta-
ble 2. The validation set size is fixed to 5 RoIs for each class from the training
set (likewise [25]). We train our model for 250 training epochs, and we choose
the best one in terms of balanced accuracy (computed on the validation set).
Adam has been used as optimizer, and all the hyper-parameters are tuned via
grid-search: weight decay is set to 10−4, learning rate η = 10−4, exponential
learning rate decay 0.99 per epoch, and minibatch size 16. Our algorithms are
implemented in Python, using PyTorch 1.5, and training/inference runs over an
NVIDIA GeForce GTX 1080 GPU.

5.1 Patches normalization

Fig. 2: Patches classification performance.

As a first step, we perform a study at different RoI resolutions: the goal
here is to identify the best scale the deep model is able to extract the features.
Towards this end, we consider 8 possible patches resolutions ϕ ∈ [300; 1000] µm,
and 3 possible input preprocessing strategies: use of the original patches (RGB),
conversion to gray-scale (gray) and the use of a standard slide normalization
strategy (Macenko et al. [18]), resulting in 24 training possibilities, which are
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reported in Fig. 2. For our classification task, the use of gray-scale images does
not remove useful information (which might be embedded in the color) and, on
the contrary, helps in removing the expected color bias [19,21]. From our results
we learn that, for the particular classification task we aim at solving, the relevant
features are embed in the image texture and the signal strength, while the direct
use of the RGB image does not compensate the color bias, or even standard slide
normalization strategies like [18] destroy some useful information which is not
embed in the color feature. For these reasons, we will focus our analysis using
gray-scale patch images as input for our model.

5.2 Study on patches resolution for WSI classification

(a) (b)

(c) (d)

Fig. 3: WSI inference performance comparison between different tissue categories at
different patches resolutions: sensitivity (a), specificity (b), F1-score (c) and balanced
accuracy (d). Red dashed line is the average performance (avg).

Here we will inspect more in depth the study on WSI classification performance
using gray-scaled input. Fig. 3 provides a general overview of some metrics eval-
uated.There is not a clear choice regarding the optimal scale features have to be
extracted. If our goal is to maximize the sensitivity for the HG class, we should
choose 400 µm: inspecting the HP’s specificity for the same scale, we observe a
drop which, however, is overall tolerable. F1-score gives us a more global infor-
mation: indeed, for the HG class, 400 µm is the best one. However, if we look
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Accuracy Sensitivity Specificity

Hyperplastic
Our (400 µm) 0.90 0.80 0.99
Our (600 µm) 0.92 0.85 0.99
Pathologist [9] 0.79 0.30 0.97

Low Grade
Our (400 µm) 0.76 0.73 0.78
Our (600 µm) 0.71 0.83 0.59
Pathologist [9] 0.66 0.57 0.69

High Grade
Our (400 µm) 0.83 0.78 0.88
Our (600 µm) 0.70 0.46 0.93
Pathologist [9] 0.83 0.81 0.84

Table 3: Human dysplasia diagnostic performance comparison

at average performance on all classes (avg), focusing on F1-score and balanced
accuracy, we can observe similar performance for 400 µm and 600-800 µm.
It is important to compare the model performance with the results obtained

by human pathologists. Table 3 reports performance comparison for HP, LG
and HG in terms of balanced accuracy, sensitivity and specificity. Here, human
pathologist’s average performance is taken from Denis et al.’s work [9], evaluated
on qualitatively similar data. As we observe, our performance is very close to
the pathologists’. In particular, HP classification increases of more than 10% in
accuracy, showing a quite significant improvement in terms of sensitivity. LG
classification improves as well up to 10% in balanced accuracy, yielding a signif-
icant improvement both in terms of sensitivity and specificity. HG classification
score is in the same order than human pathologists (this finding is likely to be
due to HG features that are known to be visually easier to detect).

5.3 WSI classification with 600µm patches

(a) NORM (b) HP (c) LG (d) HG

Fig. 4: Patch classification: each box is located at the center of the corresponding patch
with a color representing the predicted class: HP (red), NORM (white), LG (green),
HG (blue). The black dashed square visually represents the patch scale (ϕ =600 µm).

Considering that the overall performance shown by 400, 600, 700 and 800 µm
is similar, we decided here on to focus on ϕ = 600 µm. Such a scale is a fair
compromise, considering that other works in the literature focus on similar scales
[16,25]. Fig. 4 reports a patch-level classification result for the four possible WSI
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(a) ϕ =600 µm, gray-scale

Predicted
HP NORM HG LG

G
r.

tr
u
th

HP 0.85 0 0.05 0.1
NORM 0.12 0.75 0 0.12

HG 0.02 0 0.63 0.35
LG 0.03 0.09 0.18 0.7

(b) ϕ =600 µm, RGB

Predicted
HP NORM HG LG

G
r.

tr
u
th

HP 0.75 0.05 0 0.2
NORM 0 0.62 0 0.38

HG 0 0.02 0.61 0.37
LG 0.03 0.06 0.15 0.76

Table 4: WSI inferences: confusion matrices.

(a) NORM (b) HP

(c) LG (d) HG

Fig. 5: Regions where the trained neural network model focuses on 600 µm patches.

classes. In particular, we observe that the model finds some HG patches within
the LG WSI (Fig.4c), and viceversa (Fig.4d). This is an expected behavior, given
that the dysplasia grade is provided by the pathologists according to the quantity
of tissue (in our case, the number of patches) with high-grade dysplasia.
At ϕ = 600 µm, the classification between TA and TVA classes in general is poor:
this is due to the larger scale required to extract proper features for adenoma
classification. This, however, is not our goal, since we are here interested in
classifying the dysplasia grade. Hence, we group HG and LG and we obtain the
confusion matrix shown in Table 4 on WSI: the score is competitive to the human
classification, as described in Sec. 5.2. We also report the confusion matrix for
the equivalent model, using RGB images: as also observed in Sec. 5.1, the use
of gray-scale images positively impacts on the WSI inference task. Additionally,
we inspect the areas our deep model focuses in order to perform classification by
using Grad-CAM. Fig. 5 shows that areas of focus are consistent with the most
relevant features of each histo-pathological category. For example, the hot spot
of the HP sample is on a serrated gland which is a characteristic finding of this
entity.
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6 Conclusion

In this work we have designed a neural network-based pipeline for the classi-
fication of colorectal polyps in histopathological slides. We found performance
benefits by applying grayscale Luma transformation [17] to input tissue patches.
We focused on four tissue classes: normal, hyperplastic, high-dysplasia and low-
dysplasia adenoma. The dysplasia degree of adenomas is a very important evalua-
tion element for the histopathologist because it leads to different post-polypectomy
surveillance protocols [12]. The collected data enable a classification on the dys-
plasia degree in adenomas. The classification is performed by ResNet-18, in-
specting WSI in single patches, and then classified averaging scores on all the
patches. Our experiments show a performance which is very close to human
pathologists [9]. Future work includes the design of a neural network model
able to learn to extract relevant tissue RoIs from the whole slide, evaluated by
pathologists’ agreement.
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7. Cubuk, E.D., Zoph, B., Mané, D., Vasudevan, V., Le, Q.V.: Autoaugment: Learning
augmentation strategies from data. In: 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 113–123 (2019)

8. DeepHealth: Deep-learning and hpc to boost biomedical applications for health
(2019), https://deephealth-project.eu/

9. Denis, B., Peters, C., Chapelain, C., Kleinclaus, I., Fricker, A., Wild, R., Auge,
B., Gendre, I., Perrin, P., Chatelain, D., et al.: Diagnostic accuracy of commu-
nity pathologists in the interpretation of colorectal polyps. European journal of
gastroenterology & hepatology 21(10), 1153–1160 (2009)

10. Foss, F.A., Milkins, S., McGregor, A.H.: Inter-observer variability in the histologi-
cal assessment of colorectal polyps detected through the nhs bowel cancer screening
programme. Histopathology 61(1), 47–52 (2012)

https://dx.doi.org/10.21227/9fsv-tm25
https://dx.doi.org/10.21227/9fsv-tm25
https://deephealth-project.eu/


10 Perlo et al.

11. Gonzalez, R.S.: Updates and challenges in gastrointestinal pathology. Surgical
Pathology Clinics 13(3), ix (2020)

12. Hassan, C., Antonelli, G., Dumonceau, J.M., Regula, J., Bretthauer, M., Chaus-
sade, S., Dekker, E., Ferlitsch, M., Gimeno-Garcia, A., Jover, R., et al.: Post-
polypectomy colonoscopy surveillance: European society of gastrointestinal en-
doscopy (esge) guideline–update 2020. Endoscopy 52(08), 687–700 (2020)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778. IEEE Computer Society (2016)

14. He, X., Hang, D., Wu, K., Nayor, J., Drew, D.A., Giovannucci, E.L., Ogino, S.,
Chan, A.T., Song, M.: Long-term risk of colorectal cancer after removal of conven-
tional adenomas and serrated polyps. Gastroenterology 158(4), 852–861 (2020)

15. Janowczyk A, M.A.: Deep learning for digital pathology image analysis: A com-
prehensive tutorial with selected use cases. Journal of pathology informatics pp.
7–29 (2016)

16. Korbar, B., Olofson, A.M., Miraflor, A.P., Nicka, C.M., Suriawinata, M.A., Tor-
resani, L., Suriawinata, A.A., Hassanpour, S.: Deep learning for classification of
colorectal polyps on whole-slide images. Journal of pathology informatics 8 (2017)

17. Luma: https://en.wikipedia.org/wiki/Luma (video)
18. Macenko, M., Niethammer, M., Marron, J.S., Borland, D., Woosley, J.T., Guan,

X., Schmitt, C., Thomas, N.E.: A method for normalizing histology slides for quan-
titative analysis. In: 2009 IEEE International Symposium on Biomedical Imaging:
From Nano to Macro. pp. 1107–1110. IEEE (2009)

19. Mahapatra, D., Bozorgtabar, B., Thiran, J.P., Shao, L.: Structure preserving stain
normalization of histopathology images using self supervised semantic guidance. In:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020.
pp. 309–319. Springer International Publishing, Cham (2020)

20. Mollasharifi, T., Ahadi, M., Jamali, E., Moradi, A., Asghari, P., Maroufizadeh,
S., Kazeminezhad, B.: Interobserver agreement in assessing dysplasia in colorectal
adenomatous polyps: A multicentric iranian study. Iranian Journal of Pathology
pp. 167–174 (2020)

21. Roy, S., kumar Jain, A., Lal, S., Kini, J.: A study about color normalization meth-
ods for histopathology images. Micron 114, 42 – 61 (2018)

22. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: Visual explanations from deep networks via gradient-based localization. In:
ICCV. pp. 618–626. IEEE Computer Society (2017)

23. Song, Z., Yu, C., Zou, S., Wang, W., Huang, Y., Ding, X., Liu, J., Shao, L., Yuan,
J., Gou, X., et al.: Automatic deep learning-based colorectal adenoma detection
system and its similarities with pathologists. BMJ open 10(9), e036423 (2020)

24. Van Putten, P.G., Hol, L., Van Dekken, H., Han van Krieken, J., Van Ballegooijen,
M., Kuipers, E.J., Van Leerdam, M.E.: Inter-observer variation in the histological
diagnosis of polyps in colorectal cancer screening. Histopathology (2011)

25. Wei, J.W., Suriawinata, A.A., Vaickus, L.J., Ren, B., Liu, X., Lisovsky, M., Tomita,
N., Abdollahi, B., Kim, A.S., Snover, D.C., et al.: Evaluation of a deep neural
network for automated classification of colorectal polyps on histopathologic slides.
JAMA Network Open 3(4), e203398–e203398 (2020)

26. Yan, Z., Zhang, H., Piramuthu, R., Jagadeesh, V., DeCoste, D., Di, W., Yu, Y.:
Hd-cnn: hierarchical deep convolutional neural networks for large scale visual recog-
nition. In: Proceedings of the IEEE international conference on computer vision.
pp. 2740–2748 (2015)

27. Zhu, X., Bain, M.: B-cnn: branch convolutional neural network for hierarchical
classification. arXiv preprint arXiv:1709.09890 (2017)

https://en.wikipedia.org/wiki/Luma_(video)

	Dysplasia grading of colorectal polyps through convolutional neural network analysis of whole slide images 

