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Abstract. Glioblastoma Multiforme is a very aggressive type of brain tumor.
Due to spatial and temporal intra-tissue inhomogeneity, location and the extent
of the cancer tissue, it is difficult to detect and dissect the tumor regions. In
this paper, we propose survival prognosis models using four regressors operating
on handcrafted image-based and radiomics features. We hypothesize that the ra-
diomics shape features have the highest correlation with survival prediction. The
proposed approaches were assessed on the Brain Tumor Segmentation (BraTS-
2020) challenge dataset. The highest accuracy of image features with random
forest regressor approach was 51.5% for the training and 51.7% for the valida-
tion dataset. The gradient boosting regressor with shape features gave an accuracy
of 91.5% and 62.1% on training and validation datasets respectively. It is better
than the BraTS 2020 survival prediction challenge winners on the training and
validation datasets. Our work shows that handcrafted features exhibit a strong
correlation with survival prediction. The consensus based regressor with gradi-
ent boosting and radiomics shape features is the best combination for survival
prediction.

Keywords: Brain tumor segmentation (BraTS 2020), glioblastoma, survival pre-
diction

1 Introduction

Glioblastoma multiforme (GBM) is the commonest type of primary malignant brain
tumor. In the case of adults, glioblastoma makes up 60% of all brain tumors [1]. The
World Health Organization (WHO) classified GBM as a grade IV type of cancer due to
its invasive and diffusive nature. Patients suffering from GBM have a poor prognosis,
with a median survival rate of about ten months [1]. This is due to its aggressive na-
ture, highly heterogeneous appearance, location, shape, and unpredictable response to
therapy [2].

Magnetic Resonance Imaging (MRI) has been widely utilized to examine tumors
due to its non-hazardousness, high contrast and superior resolution. Generally, manual
segmentation of a tumor in MRI is time consuming and prone to subjective error. In this
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regards an automated segmentation method would be of enormous help to oncologists
and clinicians. It can help in early diagnosis as well as in therapeutic strategy plan-
ning. In recent years, deep learning-based segmentation approaches have outperformed
traditional state-of-the-art methods [3,4]. Segmentation delineates the brain tumor into
Whole Tumor (WT), Enhancing Tumor (ET), and Tumor Core (TC). Handcrafted fea-
tures extracted from these segments are used to classify the survival days of the patients.

There are many segmentation models available. Recently, Jiang et al. [5], in the
BraTS 2019 challenge, proposed a two-stage asymmetry cascaded U-Net [2] structure.
Each model is made up of a larger encoder in order to be able to extract more complex
semantic features and a smaller decoder part for generating a segmentation map with
a size identical to the input. Zhao et al. [3] proposed multiple methods to generate ro-
bust segmentation results. They grouped it into data processing, model devising, and
optimization modules. Multiple methods are assimilated into each of these modules to
enhance segmentation results. McKinley et al. [4] proposed a Densenet based U-Net
architecture. Convolutions that were dilated were used to bring about an increase in
the receptive field, which retains spatial information. The model was trained by com-
bining label uncertainty loss, binary cross-entropy and focal loss. Dice scores on the
BraTS-2019 validation dataset were 0.91(WT), 0.83(TC), 0.77(ET), and on the BraTS-
2019 test dataset were 0.89(WT), 0.83(TC), 0.81(ET). Therefore, researchers seem to
be favouring the U-Net based architecture for segmentation.

Once the tumor is segmented, features are extracted for overall survival prediction.
Agravat et al. [6] used dense layers U-Net trained on the focal loss for segmentation.
Next, age, statistical features and radiomic features train the Random Forest Regressor
(RFR) for survival prediction and the obtained accuracy on the test dataset was 0.58.
Wang et al. [7] used U-Net and U-Net ensembles with attention gates trained on soft
dice scores and cross-entropy segmentation. For survival prediction, they proposed the
following prognosis models: i) baseline model where only the age feature was used to
train a linear regressor model. ii) Radiomic model where morphological and texture fea-
tures were extracted from segmentation results. iii) Tumor invasiveness model, where
relative invasiveness coefficient (RIC) and age feature train the support vector regressor
model. The tumor invasive model was found best for survival prediction. The accuracy
for survival prediction was 0.59 and 0.56 for BraTS-2019 validation and test dataset re-
spectively. Feng et al. [8] used an ensemble of U-Net models. The models were trained
on patches having brain pixels. The main advantage of using an ensemble method is
that the network parameter need not be fine-tuned. Further, for OS prediction, volume
and surface area features were extracted for each Region of Interest (ROIs) and age to
train a linear regression model. The training and testing set accuracy was reported as
0.31 and 0.55 respectively on the BraTS-2019 datasets. Wang et al. [9] utilized a 3D
U-Net-based model, and the training occurred in two phases using patching methods.
The first phase included both brain and background pixels, whereas the second included
only brain pixels. The dice score coefficient loss function was utilized to train the 3D
U-Net model. Further for survival prediction, volume, surface area and age were used
to train the ANN model. The training, validation, and testing accuracy of the models
were 0.515, 0.448, and 0.551 respectively. Islam et al. [10] proposed a 3D U-Net ar-
chitecture for segmentation, where attention blocks have been desegregated with the
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decoder modules. For survival prediction, various geometric, fractal, and histogram-
based features were extracted to train multiple regressor models, i.e., support vector
machine (SVM), multi-layer perceptron (MLP), random forest regressor (RFR), and
eXtreme gradient Boosting (XGBOOST). The validation accuracies were: 0.329 for
SVM, 0.414 for MLP, 0.356 for RFR and 0.429 for XGBOOST.

The proposed paper aims to establish the correlation between handcrafted features
and overall survival prediction. Unlike the existing state-of-the-art methods used for
survival prediction [6],[7], [8], [9], the paper uses four predictors and two feature sets
to establish their correlation with overall survival prediction of High Grade Glioma
(HGG) patients. Shape features and gradient boosting regressors achieve better survival
prediction accuracy than state-of-the-art methods. It establishes that shape features have
a strong correlation with survival prediction. The organization of the remainder of the
paper is as follows: The Brain Tumor Segmentation (BraTS) dataset is described in
Section 2, survival prediction methods with four predictors and two feature sets are in
Section 3, Section 4 contains results and discussions and finally the conclusion of the
paper is in Section 5.

2 BraTS dataset
Due to different standards and differences in the dataset, evaluating brain tumor seg-
mentation methods objectively and predicting overall survival is a challenge. Never-
theless, for a comparison of different tumor segmentation and survival prediction tech-
niques, the BraTS (brain tumor segmentation challenge) [11,12,13] has become a popu-
lar platform. Since the year 2018, there are three tasks that are included in this platform.
The first task is the process of segmenting the brain tumor. The second task is predicting
the overall survival (OS) and the third task is estimating the uncertainty for the predicted
tumor sub-regions. The process of tumor segmentation involves delineating the tumor
into three sub-regions, namely, the whole tumor, the tumor core, and the enhancing tu-
mor. Specificity and sensitivity metrics as well as Dice score and Hausdorff Distance
are used for evaluating performance.

The overall survival prediction task classifies survival days into the following cate-
gories: long-term survivors (>15 months), intermediate-survivors (between 10 and 15
months), and short-survivors (<10 months). Samples with resection status GTR (gross
total resection) are used to rate the performance of the OS prediction. An accuracy met-
ric is used for performance evaluation, whereas mean and median square error are used
for postanalysis [14].

The BraTS 2020 training dataset includes 369 volumetric samples of high-grade
glioma (HGG) and low-grade glioma (LGG) cases. It includes metadata of 236 samples
such as age, survival days, and resection status for survival days prediction (Grosstotal
Resection (GTR) = 119, Sub-total Resection (STR) = 10, and NA = 107). The valida-
tion dataset includes 125 sample images and metadata (age, survival days, and resection
status) with 29 images having a GTR resection status. Each subject includes four MRI
scans that are preoperative (T1-weighted, T1-CE, T2-weighted, and FLAIR) and man-
ually annotated ground truth results. The annotations of ground truth include Necrotic
and Non-Enhancing tumor core NCR/NET (label-1), Edema (label-2), Active Tumor
(label-4), and 0 for everything else. The dataset has been pre-processed, i.e., all the
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scans are co-registered to the same anatomical structure, skull stripped and resampled
to an isotropic resolution of 1 × 1 × 1 mm3. The width, height, and depth of each
sample are 240, 240, and 155 respectively.

3 Survival Prediction Methodology
We use the 3D U-Net model for brain tumor segmentation proposed by Isensee et al.
[15]. This is the highest ranking and simple model in BraTS 2017. Like the U-Net
[2], this model [15] comprises a contracting path to extract more feature information
with increasing network depth. It has an expansion path to generate a segmentation
mask with precise localization information and a skip connection for better feature re-
construction at every stage of the expansion path. In our work we have used the bias
field correction, normalization, clipping maximum/ minimum intensity to remove out-
liers, rescaled to [0, 1] and setting non-brain pixels to 0. The model was trained on
a patch size of 128×128×128, randomly generated from all the input MRI modalities.
The obtained dice score on the BraTS 2020 validation dataset is 0.880(WT), 0.858(TC),
0.759(ET). The segmentation of tumor tissue of a validation sample is as shown in 1.
The figures show a visual comparison of an input flair image and a predicted image.
The segmented parts are then used for survival prediction with the prognosis methods
with 1) Image-based features, 2) Radiomics based features, and the following four pre-
dictors.

3.1 Predictors and Parameter Tuning

We have used four predictors and parameter tuning. These are (1) Artificial Neural Net-
work (ANN) [9,10], (2) Linear Regressor (LR) [7,8], (3) Gradient Boosting Regressor
(GBR) [10], and (4) Random Forest Regressor (RFR) [6,15,10]. All these predictors
were used by the top performing models in all recent BraTS challenges. These pre-
dictors deal with a small dataset and overfitting problems. The image-based prognosis
method uses only seven features making it less vulnerable to overfitting. We retain de-
fault parameters for ANN and LR, while parameters for GBR and RFR are hyper-tuned
using a grid search. We tuned the number of estimators, depth of the tree, sample split,
and learning rate parameters for the GBR. In the case of the RFR, the number of estima-
tors and the depth of the tree were hyper tuned. The predictors with radiomics features
were also tuned.

For radiomics features it turns out that an ANN with five hidden layers was better
compared to 2 or 3 hidden layers. Further, we tuned epochs, learning rate, number of
neurons, and an optimizer for ANN. In the LR model, a search was also performed for
the penalty term, the number of iterations, and up-grading of feature parameters using
LASSO and a ridge regressor. We tuned the number of estimators, maximum depth,
and learning rate for the GBR. In the RFR model, we tuned the number of estimators,
maximum depth of the tree, minimum sample split, minimum samples in a leaf node,
and maximum features parameters. Since the random forest and gradient boosting re-
gressor work on ensemble-based learning, they are robust, efficient, and less prone to
overfitting.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1: Segmentation results of training set: (a) Axial FLAIR slice (b) Axial Ground
truth (c) Axial Segmentation (d) Coronal FLAIR slice (e) Coronal Ground truth (f)
Coronal Segmentation (g) Sagittal FLAIR slice (h) Sagittal Ground truth (i) Sagittal
Segmentation, four color codes are: Brown for label-1(NCR/NET), white for label-
4(Active Tumor), orange for label-2(Edema), black for label-0(back ground)

3.2 Prognosis using Features

Image-based features [8,9] Shape features extracted from the segmentation were used
in the OS prediction. These features were volume of the WT, TC, and ET, surface area
of the WT, TC, and ET, age. Since the tumor size was the decisive predicting factor
for various cancer types, we extracted the volume and surface area of the WT, TC, and
ET. The features were extracted from the segmentation maps and input images without
any library dependency. Training with fewer features has the advantage that it limits
the dimensions of feature space. Hence, the model did not overfit. However, we found
saturation in the performance due to high bias in the model.

Radiomics based features [16] Radiomics based feature extraction is widely used for
disease diagnosis, classification, and survival prediction like lung cancer [17], breast
cancer [18], and Alzheimer’s disease [19]. Along with the size of the tumor, explor-
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ing the correlation of the other features with survival prediction is crucial to increase
the performance of the predictor models. Radiomics features addresses this problem.
It allows extracting various statistical, shape, intensity, and texture features from radio-
graphic scans. Also, radiomics allow extracting features from many imaging techniques.

Using the package PyRadiomics [16]: the following 107 features were extracted:

1. Shape features: Elongation, flatness, axis lengths, maximum diameter, mesh vol-
ume, sphericity, surface area, and surface volume ratio.

2. Gray level features: Gray-level size zone (GLSZ), Gray-level co-occurrence matrix
(GLCM), Gray-level run-length matrix (GLRLM), Gray-level dependence Matrix
(GLDM), and neighbouring gray-tone difference matrix (NGTDM).

3. First-order statistical features: Energy, entropy, minimum intensity value, maxi-
mum intensity value, mean, median, Interquartile range, percentiles, absolute devi-
ation, skewness, variance, kurtosis, and uniformity.

Radiomics features are typically multi-collinear and redundant [20]; hence the cor-
relation between these features needs to be validated for specific real-world problems.
We performed feature selection through recursive feature elimination (RFE) [21] to re-
move weaker features and avoid the curse of dimensionality. RFE is an example of
backward feature elimination. With the given number of estimators, it selects principal
features recursively from the feature set. It refits the model until the desired number of
selected features is eventually reached. Out of 107 features, we selected 20 best ranking
features.

In summary, the four predictors: ANN, RFR, LR, and GBR, are applied to: i) the
seven image-based features, ii) 107 radiomics features, iii) 20 principal radiomics fea-
tures, and iv) only shape radiomics features. Literature [6,15] also suggests dominance
of shape features so we also used all predictors with only shape features for survival
prediction. We trained the models with all the resection status (i.e., GTR, STR, and
NA) given with the dataset to increase the database size and reduce overfitting.

4 Results and Discussions
Image-based feature prediction is derived from the BraTS 2019 dataset, and the BraTS
2020 dataset was used for radiomics based feature extraction. The results are shown in
Tables 1 to 4. We have not participated in the BraTS 2020 challenge and do not have
access to the test dataset. Therefore, results are derived on the training and validation
datasets.

4.1 Image-based feature prediction
We observe that the ensemble-based models, i.e., GBR and RFR, show a better per-
formance on the training and validation dataset. Their consistency in the training and
validation accuracy suggests that the model does not overfit.

4.2 Radiomics feature-based prediction

As mentioned, we extracted 107 radiomic features from the segmentation results of
the BraTS 2020 images and fed them as input to four regressor models; ANN, LR,
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Table 1: OS Performance comparison using image-based feature on training and vali-
dation BraTS-2019 dataset. MSE, medianSE, stdSE, and SpearmanR denote the mean
square error, median square error, standard deviation squared error, and Spearman’s
ranking coefficient.

Dataset Regressor Accuracy MSE medianSE stdSE SpearmanR

Training
ANN 0.51 86148.10 21316 181346 0.48
LR 0.49 87724.00 20736 183685 0.47

GBR 0.52 63234.40 16900 126534 0.61
RFR 0.52 63234.40 16900 126534 0.61

Validation
ANN 0.45 098312.70 39204 141392 0.24
LR 0.52 100509.00 38809 141263 0.29

GBR 0.52 102999.00 36481 152694 0.27
RFR 0.52 102999.00 36481 152694 0.27

GBR, and RFR. It was observed that RFR gave the best results, and they are shown in
Table 2. The other regressors performed poorly compared to RFR, and even the fine-
tuning of the parameters did not improve the performance. The possible reasons are
the redundant nature of radiomics [20], over complexity due to too many features and
fewer training samples. Radiomics features are shallow and low-order image features,
and unable to fully describe distinct image characteristics [22]. Also, when the number
of observations is less for large extracted features, survival prediction is an ill-posed
problem [20].

Table 2: OS performance evaluation using 107 radiomics features and Random Forest
Regressor.
Dataset Accuracy MSE medianSE stdSE SpearmanR
Training 0.479 079176.96 20702.21 169474.53 0.684
Validation 0.379 115424.30 28779.30 214028.11 0.138

It can be observed from Table 2 that the large feature set is unable to yield state-
of-the-art accuracy results. Therefore, we reduced the feature set by applying recursive
feature elimination to find the 20 most dominant features. Dominant features obtained
using RFE are: age, amount of edema, elongation, maximum 2D diameter slice, spheric-
ity, surface-volume ratio, minimum and maximum intensity, interquartile range, skew-
ness, kurtosis, root mean absolute deviation, cluster prominence, cluster shade, inverse
variance, coarseness, and dependence variance. We then applied four regressors on the
dominant feature set, and performance has been noted in Table 3.

Table 3: OS performance comparison on 20 principal radiomics features.
Dataset Regressor

Models
Accuracy MSE medianSE stdSE SpearmanR

Training
ANN 0.393 8.90E+12 2.46E+12 3.36E+13 0.125
LR 0.462 96853.55 33279.52 190733.00 0.417
GBR 0.923 17213.25 00000.00 074717.13 0.938
RFR 0.744 31829.75 06077.32 075572.44 0.810

Validation
ANN 0.448 2.20E+20 3.46E+12 8.03E+20 0.290
LR 0.483 2.73E+08 056167.55 9.86E+08 0.456
GBR 0.414 255096.40 101995.06 420861.25 0.025
RFR 0.448 098369.46 035521.48 126218.18 0.126
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We observe that the linear regressor with regularisation outperforms all other re-
gression models with the highest accuracy on the validation dataset. LR also provides
similar accuracy for the training and validation datasets. The Spearman-R is also highest
for LR. In contrast, RFR achieves the lowest mean square error (MSE) on the validation
dataset.

Radiomic shape features based prediction Reviewing the correlation between ra-
diomics features and survival prediction, we found that radiomic shape features play a
crucial role in survival prediction [6,15]. Shape features show significant statistical dif-
ferences across ROIs [23]. Hence, shape features can capture tumor features related to
genetic anomalies and profoundly impact survival prediction. We formulate the hypoth-
esis that shape features profoundly impact survival prediction. In order to validate the
hypothesis, we trained predictor models with the following shape features: the amount
of necrotic, edema, enhancing tumor, the extent of the tumor, coordinates of tumor,
elongation, flatness, axis lengths, 2D diameter row, 2D diameter column, 2 D diameter
slice, maximum 3D diameter, mesh volume, sphericity, surface area, surface volume ra-
tio, centroid of necrosis and age information. The performance of each predictor model
has been noted in Table 4.

Table 4: OS performance comparison on BraTS-2020 dataset using radiomics shape
features set.

Dataset Predictor
Models

Accuracy MSE medianSE stdSE SpearmanR

Training
ANN 0.400 4.41E+11 7.15E+10 7.97E+11 0.149
LR 0.470 89890.41 35160.09 162137.20 0.461
GBR 0.915 31068.75 00000.00 150724.63 0.849
RFR 0.615 62930.78 18562.88 130788.18 0.759

Validation
ANN 0.448 4.73E+11 2.14E+11 5.97E+11 0.149
LR 0.414 087228.24 47820.00 111960.30 0.215
GBR 0.621 141065.30 23528.48 236728.70 0.338
RFR 0.448 109746.60 34689.29 200725.98 0.116

We observe that GBR and RFR have better performance. Specifically, the gradi-
ent boosting regressor outperforms all other regression models. In contrast, LR with
regularization achieves the lowest mean square error (MSE) on the validation dataset.

4.3 Discussions

It has been observed that classical machine learning techniques performed better than
the deep learning neural network-based models for survival prediction. Radiomics based
approaches are well suited for survival prediction. Traditional regression algorithms
have better interpretability than deep learning-based algorithms, they have fewer learn-
able parameters than CNN, and perform better with smaller sample data. A large sample
dataset for training is crucial for direct regression from image modalities using CNN.

The predictors trained on the 107 radiomics features underperformed. The predic-
tors modelled on the 20 principal features improved the performance. Further, to allevi-
ate performance, we experimented and trained predictors on shape features and found
a strong correlation with survival prediction. Shape features trained on the consensus
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model obtained state-of-the-art survival prediction accuracy. It was observed that the
gradient boosting regressor model performed better than other classical algorithms be-
cause of: additive model, and with each tree built, the model becomes more expressive
based on the ensemble learning model. The proposed GBR model is compared with the
survival prediction challenge winners of BraTS 2020 and prediction accuracy for the
state-of-the-art methods was obtained from the unranked leader board? ? ?. TA perfor-
mance comparison of the GBR model with top-ranking models has been noted in Table
5. It can be observed that shape-based features with the gradient boosting regressor
outperform the best-ranking methods over the validation dataset.

Table 5: OS performance comparison with top-ranking models on the BraTS-2020 val-
idation dataset.
Team name Accuracy MSE medianSE stdSE SpearmanR
SCAN 0.414 098704.65 36100.00 152175.57 0.253
Redneucon 0.517 122515.76 70305.26 157673.99 0.134
VLB 0.379 093859.54 67348.26 102092.41 0.280
COMSATS-MIDL 0.483 105079.42 37004.93 146375.99 0.134
Proposed 0.621 141065.30 23528.40 236728.70 0.338

5 Conclusion

Predicting oncological outcomes is always very tricky due to multiple challenges from
clinical and engineering perspectives. In this work, we have evaluated two feature sets
over four predictors. We proposed the image-based and the radiomic based prognosis
approaches for survival prediction. The image-based prognosis models performed well,
but the performance saturates beyond a certain point because of fewer features, and
models could not learn complexity. Similar observations are also made for the 107
radiomics features / 20 principal features and the regressor combination. All above the
combinations exhibited correlation with survival prediction. However, we recommend
that shape based features with the gradient boosting regressor is the best combination
for survival prediction. Comparing models, it was found that ensemble-based learning
models became more useful for survival prediction because of their robustness. Whereas
ANN converges speedily compared to classical models but due to lack of ample training
samples, it overfits easily. With the availability of a large dataset and more clinical non-
imaging information such as gender and treatment, survival prediction can be robust. It
can further be applied to clinical practice.
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