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Preface

Actuation is an indispensable aspect of flow control. New actuation devices can
potentially lead to the rapid deployment of advanced control system applications.
However, there is a need for appropriate compensation of nonlinearities inherent in
such actuators. One such type of actuating device is the synthetic jet actuators
which have seen active interest in the last couple of decades for next-generation
flight control. In this context, many leading research organizations like the NASA
Langley Research Center have invented several serial high-performance, piezo-
electric, and hybrid synthetic jet actuators to provide active flow control for
wing-borne vehicles in subsonic, transonic, and supersonic flow. Efficient flow
control results in reduced vehicle drag and the prevention of events that can lead to
catastrophic loss. Understanding the correlation between the actuator attributes and
resulting flow field, ascertaining the effect of interactions of synthetic jet actuators
with the turbulent flow, and determining the correlation of the actuator attributes
with surface pressure distribution for control law development are all important
aspects in this work.

The traditional objectives of an aircraft design mandate an adequate aerody-
namic performance for the entire flight envelope. However, for military aircraft,
with unconventional design requirements, the desirables are much more diverse.
With the advancement in stealth aircraft, the need to have a low level of radar
observability creates an environment where the importance of vehicle geometry and
the need to optimize it precedes aerodynamic ruggedness.

Synthetic jet actuators produce a jet flow using the surrounding air rather than
relying on a secondary fluid. Synthetic jets exhibit a highly nonlinear relationship
between their different parameters. Synthetic jets are currently being investigated for
applications such as virtual shaping of jet engine intakes and subsonic projectiles.
The core of this approach is establishing a feedback loop between new computa-
tional models, lab tests, and field experiments in order to mature the actuation system
design in a time-efficient and cost-effective and ready-implementable manner.
A model-based environment is needed for the advancement of design and perfor-
mance validation of synthetic jet actuators. However, formulating a comprehensive,
wind tunnel-validated synthetic jet model is technically challenging and expensive.
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Given the varied and growing list of synthetic jet applications, adaptive control can
cancel the actuator nonlinearities to achieve performance objectives without
requiring comprehensive models. Synthetic jets are useful for aerodynamic and
flight control.

Adaptive feedback control techniques for actuator nonlinearity compensation
have been studied for the last several decades to achieve desired control objectives
in numerous critical applications. However, the parametrized actuator nonlinearity
model structure is static, and only the parameters vary. An advantage is that the
adaptive inverse compensator can be built upon the nominal guidance and control
system without the need for a complete controller redesign. Many actuator models,
though, have a state-dependent model characteristic as has been seen in synthetic
jets. Adaptive control theorists attempt to utilize constrained state-dependent
switching algorithms to achieve control objectives when the actuator model is
highly uncertain, and a single continuous model is not feasible. However, when the
actuator model is dependent on the angle of attack (a state of the aircraft dynamics),
switching would not achieve a corresponding mathematical model of the actual
actuator physical characteristics. Such state-dependent actuator nonlinearity models
are present in several control applications such as electro-hydraulic actuator sys-
tems, where in addition to the electrical input signal, the actuator model is also
dependent on the sensed position of the valve control element.

This book presents design conditions, control designs, stability analysis, and
performance evaluations of adaptive schemes for linear and nonlinear aircraft
dynamic systems with simulation results to illustrate the effectiveness. Chapter 1
introduces linear and nonlinear actuators, and specifically, a type of nonlinear
actuators called synthetic jet actuators which are useful in flight control and active
cooling of microelectronics. Chapter 2 presents the physical characteristics of a
synthetic jet actuator, followed by the mathematical model of the actuator and
adaptive compensation of the uncertainties. We also present the control of
next-generation aircraft with synthetic jet actuation-based virtual aerodynamic wing
shaping. The adaptive inverse formulation helps cancel the jet nonlinearities.
A robust state feedback law controls the aircraft dynamics with modeling errors and
parametric uncertainties. Parameter projection-based update laws ensure a stable
system with desired signal boundedness.

Chapter 3 extends the adaptive scheme to a nonlinear aircraft. Adaptive inver-
sion is employed to compensate for the jet nonlinearities at low angles of attack.
A nonlinear state feedback law controls the aircraft dynamics with other states
providing the intermediate control laws, apart from the lift forces. Chapter 4 pre-
sents an adaptive compensation scheme at high angles of attack. We deploy a
linearly parametrized function to approximate a nonlinearly parametrized actuator
model. Adaptive inverse arrays are robust in compensating the uncertainties both in
the true jet nonlinearity model and also the linearly approximated model.
A nonlinear state feedback law controls the aircraft dynamics.

Chapter 5 develops a unified adaptation scheme to control state-dependent
actuator nonlinearities in a class of nonlinear systems using two approximators.
A linearly parametrized function approximates the nonlinearly parametrized
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actuator model. Adaptive compensation takes place through a second approximator
that is used as a feedforward function. Chapter 6 develops an improved high-order
parametrization scheme using twin neural networks. One of the neural networks
represents the signal-dependent actuator nonlinearities, and the other represents the
adaptive compensator. Higher order parametrization improves the accuracy of the
approximation presented as evidenced by the application to a nonlinear pitch plane
dynamic model. Chapter 7 extends this adaptive control technology for control of
state-dependent actuator nonlinearities to a six degrees of freedom aircraft
dynamical system for a wide range of angles of attack using two Taylor series
approximators.
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