Introduction to Visual SLAM

Xiang Gao - Tao Zhang

Introduction to Visual SLAM

From Theory to Practice

hup:ﬂwww.phetcom":n

TR () E2aR e 9\ Springer

Xiang Gao Tao Zhang

Tsinghua University Tsinghua University
Beijing, China Beijing, China
ISBN 978-981-16-4938-7 ISBN 978-981-16-4939-4 (eBook)

https://doi.org/10.1007/978-981-16-4939-4

Jointly published with Publishing House of Electronics Industry
The print edition is not for sale in China (Mainland). Customers from China (Mainland) please order the
print book from: Publishing House of Electronics Industry.

Translation from the Chinese Simplified language edition: ¥ 5 SLAM-TPUf: MHEISE|LE (5521R)
by Xiang Gao, and Tao Zhang, © Publishing House of Electronics Industry 2019. Published by Publishing
House of Electronics Industry. All Rights Reserved.

© Publishing House of Electronics Industry 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publishers, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publishers nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publishers remain neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-16-4939-4

To my beloved Lilian and Shenghan

Preface

What is This Book Talking About?

This book introduces visual SLAM, and it is probably the first Chinese book solely
focused on this specific topic. With a lot of help from the commit, it was translated
into English in 2020.

So, what is SLAM?

SLAM stands for Simultaneous Localization and Mapping. It usually refers to a
robot or a moving rigid body, equipped with a specific sensor, estimates its motion
and builds a model (certain kinds of description) of the surrounding environment,
without a priori information [1]. If the sensor referred to here is mainly a camera, it
is called Visual SLAM.

Visual SLAM is the subject of this book. We deliberately put a long definition
into one single sentence so that the readers can have a clear concept. First of all,
SLAM aims at solving the localization and map building issues at the same time. In
other words, it is a problem of how to estimate the location of a sensor itself, while
estimating the model of the environment. So how to achieve it? SLAM requires a
good understanding of sensor information. A sensor can observe the external world
in a particular form, but the specific approaches for utilizing such observations are
usually different. And, why is this problem worth spending an entire book to discuss?
Because it is difficult, especially if we want to do SLAM in real-time and without
any prior knowledge. When we talk about visual SLAM, we need to estimate
the trajectory and map based on a set of continuous images (which form a video
sequence).

This seems to be quite intuitive. When we human beings enter an unfamiliar
environment, aren’t we doing exactly the same thing? So, the question is whether we
can write programs and make computers do so.

At the birth of computer vision, people imagined that one-day computers could act
like humans, watching and observing the world and understanding the surrounding
environment. The ability to explore unknown areas is a beautiful and romantic dream,
attracting numerous researchers striving on this problem day and night [2]. We
thought that this would not be that difficult, but the progress turned out to be not

vii

viii Preface

as smooth as expected. Flowers, trees, insects, birds, and animals are recorded so
differently in computers: they are just numerical matrices consisted of numbers.
To make computers understand the contents of images is as difficult as making
us humans understand those blocks of numbers. We didn’t even know how we
understand images, nor do we know how to make computers do so. However, after
decades of struggling, we finally started to see signs of success—through Artificial
Intelligence (AI) and Machine Learning (ML) technologies, which gradually enable
computers to recognize objects, faces, voices, texts, although in a way (probabilistic
modeling) that is still so different from us.

On the other hand, after nearly three decades of development in SLAM, our
cameras begin to capture their movements and know their positions. However, there is
still amassive gap between the capability of computers and humans. Researchers have
successfully built a variety of real-time SLAM systems. Some of them can efficiently
track their locations, and others can even do the three-dimensional reconstruction in
real-time.

This is really difficult, but we have made remarkable progress. What’s more
exciting is that, in recent years, we have seen the emergence of a large number
of SLAM-related applications. The sensor location could be very useful in many
areas: indoor sweeping machines and mobile robots, self-driving cars, Unmanned
Aerial Vehicles (UAVs), Virtual Reality (VR), and Augmented Reality (AR). SLAM
is so important. Without it, the sweeping machine cannot maneuver in a room
autonomously but wandering blindly instead; domestic robots cannot follow instruc-
tions to accurately reach a specific room; Virtual reality devices will always be
limited within a seat. If none of these innovations could be seen in real life, what a
pity it would be. Today’s researchers and developers are increasingly aware of the
importance of SLAM technology. SLAM has over 30 years of research history, and
it has been a hot topic in both robotics and computer vision communities. Since the
twenty-first century, visual SLAM technology has undergone a significant change
and breakthrough in both theory and practice and is gradually moving from labo-
ratories into the real-world. At the same time, we regretfully find that, at least in
the Chinese language, SLAM-related papers and books are still very scarce, making
many beginners of this area unable to get started smoothly. Although SLAM’s theo-
retical framework has basically become mature, implementing a complete SLAM
system is still very challenging and requires a high level of technical expertise.
Researchers new to the area have to spend a long time learning a significant amount
of scattered knowledge and often have to go through several detours to get close to
the real core.

This book systematically explains the visual SLAM technology. We hope that
it will (at least partially) fill the current gap. We will detail SLAM’s theoretical
background, system architecture, and the various mainstream modules. At the same
time, we emphasize the practice: all the essential algorithms introduced in this book
will be provided with runnable code that can be tested by yourself so that readers
can reach a more in-depth understanding. Visual SLAM, after all, is a technology for
real applications. Although the mathematical theory can be beautiful, if you cannot
convert it into code, it will be like a castle in the air, bringing little practical impact.

Preface ix

We believe that practice brings real knowledge (and true love). After getting your
hands dirty with the algorithms, you can truly understand SLAM and claim that you
have fallen in love with SLAM research.

Since its inception in 1986 [3], SLAM has been a hot research topic in robotics.
It is very difficult to provide a complete introduction to all the algorithms and their
variants in the SLAM history, and we consider it unnecessary as well. This book
will first introduce the background knowledge, such as the 3D geometry, computer
vision, state estimation theory, and Lie Group/Lie algebra. We will show the trunk of
the SLAM tree and omit those complicated and oddly-shaped leaves. We think this
is effective. If the reader can master the trunk’s essence, they have already gained the
ability to explore the frontier research details. So we aim to help SLAM beginners
quickly grow into qualified researchers and developers. On the other hand, even if
you are already an experienced SLAM researcher, this book may reveal areas that
you are unfamiliar with and provide you with new insights.

There have already been a few SLAM-related books around, such as Probabilistic
Robotics [4], Multiple View Geometry in Computer Vision [2], and State Estimation
for Robotics: A Matrix-Lie-Group Approach [5]. They provide rich content, compre-
hensive discussions, and rigorous derivations, and therefore are the most popular
textbooks among SLAM researchers. However, there are two critical issues: Firstly,
the purpose of these books is often to introduce the fundamental mathematical theory,
with SLAM being only one of its applications. Therefore, they cannot be considered
as specifically visual SLAM focused. Secondly, they place great emphasis on math-
ematical theory but are relatively weak in programming. This makes readers still
fumbling when trying to apply the knowledge they learn from the books. Our belief
is one can only claim a real understanding of a problem only after coding, debugging,
and tweaking algorithms and parameters with his own hands.

This book will introduce the history, theory, algorithms, and research status
in SLAM and explain a complete SLAM system by decomposing it into several
modules: visual odometry, backend optimization, map building, and loop closure
detection. We will accompany the readers step by step to implement each core algo-
rithm, discuss why they are effective, under what situations they are ill-conditioned,
and guide them by running the code on your own machines. You will be exposed to
the critical mathematical theory and programming knowledge and will use various
libraries including Eigen, OpenCV, PCL, g2o0, and Ceres, and learn their usage in
Linux.

Well, enough talking, wish you a pleasant journey!

How to Use This Book?

This book is entitled as Introduction to Visual SLAM: From Theory to Practice. We
will organize the contents into lectures like studying in a classroom. Each lecture
focuses on one specific topic, organized in a logical order. Each chapter will include
both a theoretical part and a practical part, with the theoretical usually coming

Preface

first. We will introduce the mathematics essential to understand the algorithms, and
most of the time in a narrative way, rather than in a definition, theorem, inference
approach adopted by most mathematical textbooks. We think this will be much
easier to understand, but of course, with the price of being less rigorous sometimes.
In practical parts, we will provide code, discuss the various components’ meaning,
and demonstrate some experimental results. So, when you see chapters with the word
practice in the title, you should turn on your computer and start to program with us,
joyfully.

The book can be divided into two parts: The first part will be mainly focused on

fundamental math knowledge, which contains

1.

2.

Preface (the one you are reading now), introducing the book’s contents and
structure.

Lecture 1: an overview of a SLAM system. It describes each module of a
typical SLAM system and explains what to do and how to do it. The practice
section introduces basic C++ programming in a Linux environment and the
use of an IDE.

Lecture 2: rigid body motion in 3D space. You will learn about rotation
matrices, quaternions, Euler angles and practice them with the Eigen library.
Lecture 3: Lie group and Lie algebra. It doesn’t matter if you have never heard
of them. You will learn the basics of the Lie group and manipulate them with
Sophus.

Lecture 4: pinhole camera model and image expression in computer. You will
use OpenCV to retrieve the camera’s intrinsic and extrinsic parameters and
generate a point cloud using the depth information through Point Cloud Library
(PCL).

Lecture 5: nonlinear optimization, including state estimation, least squares,
and gradient descent methods, e.g., Gauss-Newton and Levenburg-Marquardt
method. You will solve a curve-fitting problem using the Ceres and g2o library.
From lecture 6, we will be discussing SLAM algorithms, starting with visual
odometry (VO) and followed by the map building problems:

Lecture 6: feature-based visual odometry, which is currently the mainstream
in VO. Contents include feature extraction and matching, epipolar geometry
calculation, Perspective-n-Point (PnP) algorithm, Iterative Closest Point (ICP)
algorithm, and Bundle Adjustment (BA), etc. You will run these algorithms
either by calling OpenCV functions or constructing your own optimization
problem in Ceres and g2o.

Lecture 7: direct (or intensity-based) method for VO. You will learn the optical
flow principle and the direct method. The practice part is about writing single-
layer and multi-layer optical flow and direct method to implement a two-view
VO.

Lecture 8: backend optimization. We will discuss Bundle Adjustment in detail
and show the relationship between its sparse structure and the corresponding
graph model. You will use Ceres and g2o0 separately to solve the same BA
problem.

Preface xi

10. Lecture 9: pose graph in the backend optimization. Pose graph is a more
compact representation for BA, which converts all map points into constraints
between keyframes. You will use g2o to optimize a pose graph.

11. Lecture 10: loop closure detection, mainly Bag-of-Word (BoW) based method.
You will use DBoW3 to train a dictionary from images and detect loops in
videos.

12. Lecture 11: map building. We will discuss how to estimate the depth of pixels in
monocular SLAM (and show why they are unreliable). Compared with monoc-
ular depth estimation, building a dense map with RGB-D cameras is much
easier. You will write programs for epipolar line search and patch matching to
estimate depth from monocular images and then build a point cloud map and
octagonal treemap from RGB-D data.

13. Lecture 12: a practice chapter for stereo VO. You will build a visual odometry
framework by yourself by integrating the previously learned knowledge and
solve problems such as frame and map point management, keyframe selection,
and optimization control.

14. Lecture 13: current open-source SLAM projects and future development direc-
tion. We believe that after reading the previous chapters, you can understand
other people’s approaches easily and be capable of achieving new ideas of your
own.

Finally, if you don’t understand what we are talking about at all, congratulations!
This book is right for you!

Source Code

All source code in this book is hosted on Github: https://github.com/gaoxiang12/sla
mbook?2

Note the slambook? refers to the second version in which we added a lot of extra
experiments.

Check out the English version by: git checkout -b en origin-en

It is strongly recommended that readers download them for viewing at any time.
The code is divided into chapters. For example, the contents of the 7th lecture will
be placed in folder ch7. Some of the small libraries used in the book can be found in
the “3rdparty” folder as compressed packages. For large and medium-sized libraries
like OpenCV, we will introduce their installation methods when they first appear.
If you have any questions regarding the code, click the issue button on GitHub to
submit. If there is indeed a problem with the code, we will correct them in time. If
you are not accustomed to using Git, you can also click the Download button on the
right side to download a zipped file to your local drive.

https://github.com/gaoxiang12/slambook2

xii Preface

Targeted Readers

This book is for students and researchers interested in SLAM. Reading this book
needs specific prerequisites, and we assume that you have the following knowledge:

e Calculus, Linear Algebra, Probability Theory. These are the fundamental math-
ematical knowledge that most readers should have learned during undergraduate
study. You should at least understand what a matrix and a vector are, and what it
means by doing differentiation and integration. For more advanced mathematical
knowledge required, we will introduce in this book as we proceed.

e Basic C++ Programming. As we will be using C++ as our major programming
language, it is recommended that the readers are at least familiar with its basic
concepts and syntax. For example, you should know what a class is, how to use
the C++ standard library, how to use template classes, etc. We will try our best to
avoid using tricks, but we really cannot avert them in certain situations. We will
also adopt some of the C++11 standards, but don’t worry. They will be explained
if necessary.

e Linux Basics. Our development environment is Linux instead of Windows, and
we will only provide source code for Linux. We believe that mastering Linux is an
essential skill for SLAM researchers, and please don’t ask for Windows-related
issues. After going through this book’s contents, we think you will agree with
us.! In Linux, the configuration of related libraries is so convenient, and you will
gradually appreciate the benefit of mastering it. If you have never used a Linux
system, it will be beneficial to find some Linux learning materials and spend
some time reading them (the first few chapters of an introductory book should be
sufficient). We do not ask readers to have superb Linux operating skills, but we
do hope readers know how to find a terminal and enter a code directory. There are
some self-test questions on Linux at the end of this chapter. If you have answers
to them, you should be able to quickly understand the code in this book.

Readers interested in SLAM but do not have the knowledge mentioned above
may find it difficult to proceed with this book. If you do not understand the basics
of C++, you can read some introductory books such as C++ Primer Plus. If you
do not have the relevant math knowledge, we also suggest reading some relevant
math textbooks first. Nevertheless, most readers who have completed undergraduate
study should already have the necessary mathematical backgrounds. Regarding the
code, we recommend that you spend time typing them by yourself and tweaking the
parameters to see how they affect outputs. This will be very helpful.

This book can be used as a textbook for SLAM-related courses or as self-study
materials.

! Linux is not that popular in China as our computer science education starts very lately around the
1990s.

Preface xiii

Style

This book covers both mathematical theory and programming implementation.
Therefore, for the convenience of reading, we will be using different layouts to
distinguish the contents.

1.

Mathematical formulas will be listed separately, and important formulas will
be assigned with an equation number on the right end of the line, for example,

y = Ax. (D)

Italics are used for scalars like a. Bold symbols are used for vectors and matrices
like a, A. Hollow bold represents special sets, e.g., the real number set R and
the integer set Z. Gothic is used for Lie Algebra, e.g., s¢(3).

Source code will be framed into boxes, using a smaller font size, with line
numbers on the left. If a code block is long, the box may continue to the next

page:

Listing 1 Code example:

#include <iostream>
using namespace std;

int main (int argc, char*x argv) {
cout << "Hello" << endl;
return 0;

When the code block is too long or contains repeated parts with previously
listed code, it is not appropriate to be listed entirely. We will only give the
important parts and mark them with part. Therefore, we strongly recommend
that readers download all the source code on GitHub and complete the exercises
to better understand the book.

Due to typographical reasons, the book’s code may be slightly different from
the code in GitHub. In that case, please use the code on GitHub.

For each of the libraries we use, it will be explained in detail when first
appearing but not repeated in the follow-up. Therefore, it is recommended
that readers read this book in order.

A goal of study part will be presented at the beginning of each lecture. A
summary and some exercises will be given at the end. The cited references are
listed at the end of the book.

The chapters with an asterisk mark in front are optional readings, and readers
can read them according to their interests. Skipping them will not hinder the
understanding of subsequent chapters.

Important contents will be marked in bold or ifalic, as we are already
accustomed to.

Xiv

10.

Preface

Most of the experiments we designed are demonstrative. Understanding them
does not mean that you are already familiar with the entire library. Otherwise,
this book will be an OpenCV or PCL document. So we recommend that you
spend time on yourselves in further exploring the important libraries frequently
used in the book.

The book’s exercises and optional readings may require you to search for
additional materials, so you need to learn to use search engines.

Exercises (Self-test Questions)

w

Suppose we have a linear equation Ax = b. If A and b are known, how to solve
the x? What are the requirements for A and b if we want a unique x? (Hint:
check the rank of A and b).

What is a Gaussian distribution? What does it look like in a one-dimensional
case? How about in a high-dimensional case?

What is the class in C++? Do you know STL? Have you ever used them?
How do you write a C++ program? (It’s completely fine if your answer is “using
Visual C++ 6.0” 2).

Do you know the C++11 standard? Which new features have you heard of or
used? Are you familiar with any other standard?

Do you know Linux? Have you used at least one of the popular distributions
(not including Android), such as Ubuntu?

What is the directory structure of Linux? What basic commands do you know?
(e.g., Is, cat, etc.)

How to install the software in Ubuntu (without using the Software Center)?
What directories are software usually installed under? If you only know the
fuzzy name of a software (for example, you want to install a library with the
word “eigen” in its name), how to search it?

*Spend an hour learning vim. You will be using it sooner or later. You can
vimtutor into a terminal and read through its contents. We do not require you to
operate it very skillfully, as long as you can use it to edit the code in the process
of learning this book. Do not waste time on its plugins for now. Do not try to
turn vim into an IDE. We will only use it for text editing in this book.

Beijing, China Xiang Gao

Tao Zhang

2 As I know, many of our undergraduate students are still using this version of VC++in the university.

Acknowledgments

In the process of writing this book, a large number of documents and papers have
been referenced. Most of the theoretical knowledge of mathematics is the result of
previous research, not my original creation. A small part of the experimental design
also comes from various open-source code demonstration programs, but most of
them are written by myself. In addition, there are some pictures taken from published
journals or conference papers, which have been cited in the text. Unexplained images
are either original or fetched from the Internet. I don’t want to infringe anyone’s
picture copyright. If readers find any problems, please contact me to modify it.

As I’'m not a native English speaker, the translation work is based on Google
translation and some afterward modifications. If you think the quality of translation
can be improved and willing to do this, please contact me or send an issue on Github.
Any help will be welcome!

My friends, Dr. Yi Liu and Qinrei Yan, helped me a lot in the Chinese edition
of this book. And I also thank them very much about this. Thanks for the following
friend’s help in the translation time: Nicolas Rosa, Carrie (Yan Ran), Collen Jones,
Hong Ma. And also, thanks for your attention and support!

Please contact me through GitHub or email: gao.xiang.thu@gmail.com.

XV

mailto:gao.xiang.thu@gmail.com

Contents

PartI Fundamental Knowledge

1

Introduction to SLAM
1.1 Meet “Little Carrot”iiiiiiiiineinennnnn
1.1.1 MonocularCameraccoiiriineinann..
1.1.2 Stereo Cameras and RGB-D Cameras
1.2 Classical Visual SLAM Framework
1.2.1 Visual Odometryccoviiiiiiineeinnn..
1.2.2 Backend Optimizationcooveien...
1.23 Loop CloSinguuuunniiiii i
1.24 Mappinguuuuun e
1.3 Mathematical Formulation of SLAM Problems
1.4 Practice: Basicst
1.4.1 Installing Linuxccoiiiiiiiiiiineennnn..
1.42 HelloSLAM
143 UseCMakecoiiiiii i
1.44 UseLibrariesouiiiiiinaiiaana..
145 UselIDE
3D Rigid Body Motion
2.1 Rotation MatrixXuiuiiniiiii i
2.1.1 Points, Vectors, and Coordinate Systems

2.1.2 Euclidean Transforms Between Coordinate
SYSIEMS .ottt
2.1.3 Transform Matrix and Homogeneous Coordinates
2.2 Practice: US€ Eigenuuuuiumii i,
2.3 Rotation Vectors and the Euler Angles
2.3.1 Rotation Vectorscouuiiiniiiaainn...
232 Euler Anglesouiiii
2.4 QUALCIMIONS ...\ttt et ettt e et et
2.4.1 Quaternion Operationscceuuuuneeeenn..
2.4.2 Use Quaternion to Represent a Rotation

35
38
40
44
44
46
48
49
51

xvii

Xviii

Contents

2.4.3 Conversion of Quaternions to Other Rotation
Representations i oL 51
2.5 Affine and Projective Transformation 53
2.6 Practice: Eigen Geometry Module 55
2.6.1 Data Structure of the Eigen Geometry Module 55
2.6.2 Coordinate Transformation Example 57
277 VisualizationDemo o o ool 58
2.7.1 Plotting Trajectoryc.c.ueuuuuuuuunnnnn. 58
2.7.2 Displaying CameraPose 60
Lie Group and Lie Algebra 63
3.1 Basics of Lie Group and Lie Algebra 63
3Ll GIoUD ettt 64
3.1.2 Introduction of the Lie Algebra 65
3.1.3 The Definition of Lie Algebra 67
3.14 Lie Algebraso(3)coiiiiiiiiiiiiiiiia 68
3.1.5 LieAlgebrase(3) ..., 68
3.2 Exponential and Logarithmic Mapping 69
3.2.1 Exponential Map of SO(3) 69
3.2.2 Exponential Map of SE(3) 71
3.3 Lie Algebra Derivation and Perturbation Model 72
3.3.1 BCH Formula and Its Approximation 72
332 Derivative on SO3) . ..ot 75
3.3.3 Derivative Model i, 76
3.34 Perturbation Model il 77
3.35 Derivativeon SE(3) 78
3.4 Practice: SOpPhUSt 79
3.4.1 Basic Usage of Sophus 79
3.4.2 Example: Evaluating the Trajectory 81
3.5 Similar Transform Group and Its Lie Algebra 84
3.6 SUMMAIY ... 85
Camerasand Images iiiiiiiniiinnnn... 87
4.1 Pinhole CameraModels 87
4.1.1 Pinhole Camera Geometry 88
4.1.2 DIStOrtion 91
413 StereoCamerasuuiiiiiiiiii ... 94
4.1.4 RGB-DCamerasoooiiiiiiinnnnnnnnnn.. 96
42 TGRS .« oottt 97
4.3 Practice: Images in Computer Vision 99
4.3.1 Basic Usage of OpenCV 99
4.3.2 Basic OpenCV Images Operations 100
4.3.3 Image UndiStortionooeviiiinnnnnn.. 103
44 Practice: 3D Vision ... i i i 104
4.4.1 Stereo VISIONuuunu i 104

442 RGB-DVisionccoiiiiiiiiiiiiiiii... 105

Contents

5

6

Xix

Nonlinear Optimization .. 109
5.1 State Estimationoiiiiiiiii 110
5.1.1 From Batch State Estimation to Least-Square 110

5.1.2 Introduction to Least-Squares 112

5.1.3 Example: Batch State Estimation 114

5.2 Nonlinear Least-Square Problem 116
5.2.1 The First and Second-Order Method 117

5.2.2 The Gauss-Newton Method 118

5.2.3 The Levernberg-Marquatdt Method 120

524 Conclusioniiiiiii 122

5.3 Practice: Curve Fitting ...t 123
5.3.1 Curve Fitting with Gauss-Newton 123

5.3.2 Curve Fitting with Google Ceres 126

533 Curve Fittingwith g20, 132

54 Summary ... 138

Part I SLAM Technologies

Visual Odometry: PartI 143
6.1 Feature Method L. 143
6.1.1 ORBFeatureccouiiiiiiiiiiiiiinnn. 146

6.1.2 Feature Matching coiiiiiiiona.. 149

6.2 Practice: Feature Extraction and Matching 151
6.2.1 ORB Features in OpenCV 152

6.2.2 ORB Features from Scratch 154

6.2.3 Calculate the Camera Motion 157

6.3 2D-2D: Epipolar GEOMEtryovveiiiunneeennnnn... 157
6.3.1 Epipolar Constraintscccouuiineeeenn.. 157

6.3.2 Essential Matrix 160

6.3.3 Homographyc..uuiiiiiiiiiinnn. 162

6.4 Practice: Solving Camera Motion with Epipolar Constraints 165
6.4.1 DISCUSSION ...t vttttttt ettt 167

6.5 Triangulation 169
6.6 Practice: Triangulation i, 170
6.6.1 Triangulation with OpenCV 170

6.6.2 DISCUSSION ...t ttttttt et 171

6.7 3D-2DPnP ... 173
6.7.1 Direct Linear Transformation 173

6.7.2 P3P 175

6.7.3 Solve PnP by Minimizing the Reprojection Error 177

6.8 Practice: SolvingPnP il 181
6.8.1 Use EPnP to Solvethe Pose 181

6.8.2 Pose Estimation from Scratch 182

6.8.3 Optimizationby g20 i, 183

6.9 3D-3D Iterative Closest Point ICP) 187

XX

Contents

6.9.1 Using Linear Algebra (SVD) 188
6.9.2 Using Non-linear Optimization 190
6.10 Practice: Solving ICP i i 191
6.10.1 Using SVD ... 191
6.10.2 Using Non-linear Optimization 192
6.11 SumMmaryniiii 194
Visual Odometry: Part I 197
7.1 The Motivation of the Direct Method 197
7.2 2D Optical Flow i 199
7.2.1 Lucas-Kanade Optical Flow 199
7.3 Practice: LK Optical Flow, 201
73.1 LKFlowinOpenCV, 201
7.3.2 Optical Flow with Gauss-Newton Method 202
7.3.3 Summary of the Optical Flow Practice 208
74 Direct Method 208
7.4.1 Derivation of the Direct Method 208
7.4.2 Discussion of Direct Method 211
7.5 Practice: Direct method 212
7.5.1 Single-Layer Direct Method 212
7.5.2 Multi-layer Direct Method 215
7.5.3 DISCUSSION ..ttt e 216

7.5.4 Advantages and Disadvantages of the Direct
Method 219
Filters and Optimization Approaches: PartI 223
8.1 Introductionuui 223
8.1.1 State Estimation from Probabilistic Perspective 223
8.1.2 Linear Systems and the Kalman Filter 226
8.1.3 Nonlinear Systems and the EKF 229
8.1.4 Discussion About KFand EKF 231
8.2 Bundle Adjustment and Graph Optimization 233
8.2.1 The Projection Model and Cost Function 233
8.2.2 Solving Bundle Adjustment 234
823 Sparsity ... 236
8.2.4 Minimal Example of BA, 237
825 SchurTrick i i 240
82.6 RobustKernels L. 243
8.2.7 SUMMALY ...ttt 244
8.3 Practice: BAwithCeresooiiiiiiiiiiiian... 245
8.3.1 BALDatasetc.uuuiiiiiiii i 245
832 SolvingBAinCeres 246
84 Practice: BAwith g20o 249

8.5 Summary 252

Contents

9

10

11

XXi

Filters and Optimization Approaches: PartII 255
9.1 Sliding Window Filter and Optimization 255
9.1.1 Controlling the Structure of BA 255

9.1.2 Sliding Window i 257

9.2 Pose Graph Optimization oo, 260
9.2.1 Definition of Pose Graph 260

9.2.2 Residuals and Jacobians 261

9.3 Practice: Pose Graph o o ool 263
9.3.1 Pose Graph Using g2o0 Built-in Classes 263

9.3.2 Pose Graph Using Sophusccoiuun.. 266

0.4 SUMMATY ..ottt e 271
Loop Closurecoiiiiii e 273
10.1 Loop Closure and Detection 273
10.1.1 Why Loop Closure Is Needed 273

10.1.2 How to Close the Loopscooiiiiiiin... 275

10.1.3 Precisionand Recall 276

10.2 Bagof Words ..ot 278
10.3 Train the Dictionary 280
10.3.1 The Structure of Dictionary 280

10.3.2 Practice: Creating the Dictionary 281

10.4 Calculate the Similarity, 284
10.4.1 Theoretical Part 284

10.4.2 Practice Part 285

10.5 Discussion About the Experiment 288
10.5.1 Increasing the Dictionary Scale 288

10.5.2 Similarity Score Processing 290

10.5.3 Processing the Keyframes 290

10.5.4 Validation of the Detected Loops 291

10.5.5 Relationship with Machine Learning 291
Dense Reconstruction 293
11.1 Brief Introduction 293
11.2 Monocular Dense Reconstruction 296
11.2.1 Stereo Visionc..uuuiiiiiiiinninnnnnnn.. 296

11.2.2 Epipolar Line Search and Block Matching 297

11.2.3 Gaussian Depth Filters 299

11.3 Practice: Monocular Dense Reconstruction 302
11.3.1 DiSCUSSION .. e v vttt 310

11.3.2 Pixel Gradientscooiiiiiiiniinnnnnn... 310

11.3.3 Inverse Depth Filter 311

11.3.4 Pre-Transform the Image 313

11.3.5 Parallel Computingcooiiiiiiiinnnnnnn.. 314

11.3.6 Other Improvementsccovvveeeenn.. 314

114 Dense RGB-DMappingcooiiiiiiiiiiinin... 315

11.4.1 Practice: RGB-D Point Cloud Mapping 316

XXii Contents

11.4.2 Building Meshes from Point Cloud 320

11.43 Octo-Mappingc.couuuuiiiiiiiiiiaaannnn.. 322

11.4.4 Practice: OCto-mappingououuuuueeaaeeann.. 325

11.5 *TSDF and RGB-D Fusion Series 327

11.6 Summary ... 330

12 Practice: Stereo Visual Odometry 331
12.1 Why Do We Have a Separate Engineering Chapter? 331

12.2 Frameworko 333
12.2.1 DataStructureooiiiiiiiiiiiiiinia... 333

1222 Pipelineouunnn 334

12.3 Implementationoviiiiiiiineeeininneeennnn. 335
12.3.1 Implement the Basic Data Structure 335

12.3.2 Implement the Frontend 339

12.3.3 Implement the Backend 341

12.4 ExperimentResults L. 344

13 Discussions and Outlook 347
13.1 Open-Source Implementations 347
13.1.1 MonoSLAM 348

13.1.2 PTAM .. 349

13.1.3 ORB-SLAM Seriescoiiiiiiiiiiinnno... 351

13.1.4 LSD-SLAM ... 353

13.1.5 SVO 354

13.1.6 RTAB-MAP 356

13.1.7 Others ...t e 356

13.2 SLAMinFuture i 357
13.2.1 IMU Integrated VSLAMccoiiiiiion... 358

13.2.2 Semantic SLAM 359

Appendix A: Gaussian Distribution L 363
Appendix B: Matrix Derivatives 367

References i 369

	Preface
	What is This Book Talking About?
	How to Use This Book?
	Source Code
	Targeted Readers
	Style
	Exercises (Self-test Questions)

	Acknowledgments
	Contents

