Skip to main content

Daily PM2.5 Forecasting Using Graph Convolutional Networks Based on Human Migration

  • Conference paper
  • First Online:
  • 1772 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1449))

Abstract

Most existing deep learning methods for air pollution concentration forecasting mainly focus on temporal characteristics of air pollutants. However, the spatial characteristics of air pollution concentration are closely related between nearby cities. In this study, we construct Target-city Graphs (TCG) to reveal the features of air pollutants between cities by using intercity migration networks. Then, we develop Graph Convolutional Neural Networks (GCN) and Graph Attention Networks (GAT) with Sum Aggregation (Sum-agg) and Mean Aggregation (Mean-agg) functions to forecast daily PM2.5 concentration time series based on TCG graph representing. The experimental results indicate that the GAT with Sum aggregation performs the best in forecasting PM2.5 while considering the intercity migration data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Massey, D., Masih, J., Kulshrestha, A., Habil, M., Taneja, A.: Indoor/outdoor relationship of fine particles less than 2.5 \(\mu \)m (PM2. 5) in residential homes locations in central Indian region. Build. Environ. 44(10), 2037–2045 (2009)

    Article  Google Scholar 

  2. Mahajan, S., Chen, L.-J., Tsai, T.-C.: An empirical study of pm2. 5 forecasting using neural network. In: Proceedings of the 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 1–7. IEEE (2017)

    Google Scholar 

  3. Biancofiore, F., et al.: Recursive neural network model for analysis and forecast of PM10 and PM2. 5. Atmos. Pollut. Res. 8(4), 652–659 (2017)

    Article  Google Scholar 

  4. Zhu, H., Lu, X.: The prediction of PM2. 5 value based on ARMA and improved BP neural network model. In: 2016 International Conference on Intelligent Networking and Collaborative Systems (INCoS), pp. 515–517. IEEE (2016)

    Google Scholar 

  5. Voukantsis, D., Karatzas, K., Kukkonen, J., Räsänen, T., Karppinen, A., Kolehmainen, M.: Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2. 5 concentrations using artificial neural networks, in Thessaloniki and Helsinki. Sci. Total Environ. 409(7), 1266–1276 (2011)

    Article  Google Scholar 

  6. Chen, Z., Ye, X., Huang, P.: Estimating carbon dioxide (CO2) emissions from reservoirs using artificial neural networks. Water 10(1), 26 (2018)

    Article  Google Scholar 

  7. Tao, Q., Liu, F., Li, Y., Sidorov, D.: Air pollution forecasting using a deep learning model based on 1D convnets and bidirectional GRU. IEEE Access 7, 76690–76698 (2019)

    Article  Google Scholar 

  8. Cheng, Y., Zhang, H., Liu, Z., Chen, L., Wang, P.: Hybrid algorithm for short-term forecasting of PM2. 5 in China. Atmos. Environ. 200, 264–279 (2019)

    Article  Google Scholar 

  9. Zhang, H., Liu, Y., Yan, J., Han, S., Li, L., Long, Q.: Improved deep mixture density network for regional wind power probabilistic forecasting. IEEE Trans. Power Syst. 35(4), 2549–2560 (2020)

    Article  Google Scholar 

  10. Zhu, J., Song, Y., Zhao, L., Li, H.: A3T-GCN: attention temporal graph convolutional network for traffic forecasting. arXiv preprint arXiv:2006.11583 (2020)

  11. Byeonghyeop, Yu., Lee, Y., Sohn, K.: Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN). Transp. Res. Part C: Emerg. Technol. 114, 189–204 (2020)

    Article  Google Scholar 

  12. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

    Article  Google Scholar 

  13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  14. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  15. Wang, S., Li, Y., Zhang, J., Meng, Q., Meng, L., Gao, F.: PM2. 5-GNN: a domain knowledge enhanced graph neural network for PM2. 5 forecasting. In: Proceedings of the 28th International Conference on Advances in Geographic Information Systems, pp. 163–166 (2020)

    Google Scholar 

  16. Qi, Y., Li, Q., Karimian, H., Liu, D.: A hybrid model for spatiotemporal forecasting of PM2. 5 based on graph convolutional neural network and long short-term memory. Sci. Total Environ. 664, 1–10 (2019)

    Article  Google Scholar 

  17. Zhou, H., Zhang, F., Du, Z., Liu, R.: Forecasting PM2. 5 using hybrid graph convolution-based model considering dynamic wind-field to offer the benefit of spatial interpretability. Environ. Pollut. 273, 116473 (2021)

    Article  Google Scholar 

  18. Wang, C., Zhu, Y., Zang, T., Liu, H., Yu, J.: Modeling inter-station relationships with attentive temporal graph convolutional network for air quality prediction. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pp. 616–634 (2021)

    Google Scholar 

  19. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. arXiv preprint arXiv:1706.02216 (2017)

  20. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015)

Download references

Acknowledgment

This work was supported by Science and Technology Program of Guangzhou, China (201904010224), Natural Science Foundation of Guangdong Province, China (2020A1515010761), and National Science Foundation of China Project 72004174.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhan, C., Jiang, W., Zhen, Q., Hu, H., Yuan, W. (2021). Daily PM2.5 Forecasting Using Graph Convolutional Networks Based on Human Migration. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2021. Communications in Computer and Information Science, vol 1449. Springer, Singapore. https://doi.org/10.1007/978-981-16-5188-5_51

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5188-5_51

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5187-8

  • Online ISBN: 978-981-16-5188-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics