Skip to main content

Modeling Data Center Networks with Message Passing Neural Network and Multi-task Learning

  • Conference paper
  • First Online:
Book cover Neural Computing for Advanced Applications (NCAA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1449))

Included in the following conference series:

Abstract

Network modeling is a pivotal component to operate network efficiently in future Software Defined Network (SDN) based Data Center Networks. However, obtaining a general network model to produce accurate predictions of key performance metrics such as delay, jitter or packet loss jointly at minimal cost is difficult. To this end, we propose a novel network model based on message passing neural network (MPNN) and multi-task learning, which could unveil the potential connections between network topology, routing and traffic characteristics to produce accurate estimates of per-source/destination mean delay, jitter and packet drop ratio with only one model. Specifically, an extended multi-output architecture is proposed and an elaborate loss function is introduced to facilitate the learning task. In addition, we present the modules of our simulation environment for generating the training samples, which is generic and easy to deploy. Experimental results show that our approach can get better performance compared to the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mestres, A., Rodriguez-Natal, A., Carner, J., et al.: Knowledge-defined networking. ACM SIGCOMM Comput. Commun. Rev. 47(3), 2–10 (2017)

    Article  Google Scholar 

  2. Kreutz, D., Ramos, F.M.V., Verissimo, P.E., et al.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2014)

    Article  Google Scholar 

  3. Han, B., Gopalakrishnan, V., Ji, L., et al.: Network function virtualization: challenges and opportunities for innovations. IEEE Commun. Mag. 53(2), 90–97 (2015)

    Article  Google Scholar 

  4. Rusek, K., Suárez-Varela, J., Mestres, A., et al.: Unveiling the potential of graph neural networks for network modeling and optimization in SDN. In: Proceedings of the 2019 ACM Symposium on SDN Research, pp. 140–151 (2019)

    Google Scholar 

  5. Geyer, F., Bondorf, S.: DeepTMA: predicting effective contention models for network calculus using graph neural networks. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 1009–1017. IEEE (2019)

    Google Scholar 

  6. Geyer, F., Bondorf, S.: On the robustness of deep learning-predicted contention models for network calculus. In: 2020 IEEE Symposium on Computers and Communications (ISCC), pp. 1–7. IEEE (2020)

    Google Scholar 

  7. Giambene, G.: Queuing Theory and Telecommunications: Networks and Applications. Springer, New York (2005)

    Google Scholar 

  8. Carneiro, G.: NS-3: network simulator 3. In: UTM Lab Meeting, vol. 20, pp. 4–5 (2010)

    Google Scholar 

  9. András, V.: The OMNeT++ discrete event simulation system. In: ESM 2001 (2001)

    Google Scholar 

  10. Goodfellow, I., Bengio, Y., Courville, A., et al.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  11. Shen, Z., Yang, H., Zhang, S.: Neural network approximation: three hidden layers are enough. arXiv preprint arXiv:2010.14075 (2020)

  12. Mestres, A., Alarcón, E., Ji, Y., et al.: Understanding the modeling of computer network delays using neural networks. In: Proceedings of the 2018 Workshop on Big Data Analytics and Machine Learning for Data Communication Networks, pp. 46–52 (2018)

    Google Scholar 

  13. Rusek, K., Suárez-Varela, J., Almasan, P., et al.: RouteNet: leveraging graph neural networks for network modeling and optimization in SDN. IEEE J. Sel. Areas Commun. 38(10), 2260–2270 (2020)

    Article  Google Scholar 

  14. Ciucu, F., Schmitt, J.: Perspectives on network calculus: no free lunch, but still good value. In: Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, pp. 311–322 (2012)

    Google Scholar 

  15. Eun, D.Y.: On the limitation of fluid-based approach for internet congestion control. Telecommun. Syst. 34, 3–11 (2007)

    Article  Google Scholar 

  16. Xiong, B., Yang, K., Zhao, J., et al.: Performance evaluation of OpenFlow-based software-defined networks based on queueing model. Comput. Netw. 102, 172–185 (2016)

    Article  Google Scholar 

  17. Li, G., Wang, X., Zhang, Z.: SDN-based load balancing scheme for multi-controller deployment. IEEE Access 7, 39612–39622 (2019)

    Article  Google Scholar 

  18. Altman, E., Basar, T., Jimenez, T., et al.: Competitive routing in networks with polynomial costs. IEEE Trans. Autom. Control 47(1), 92–96 (2002)

    Article  MathSciNet  Google Scholar 

  19. Jain, S., Khandelwal, M., Katkar, A., et al.: Applying big data technologies to manage QoS in an SDN. In: 2016 12th International Conference on Network and Service Management (CNSM), pp. 302–306. IEEE (2016)

    Google Scholar 

  20. Al-Fares, M., Radhakrishnan, S., Raghavan, B., et al.: Hedera: dynamic flow scheduling for data center networks. In: NSDI 2010, vol. 10, no. (8), pp. 89–92 (2010)

    Google Scholar 

  21. Curtis, A.R., Kim, W., Yalagandula, P.: Mahout: low-overhead datacenter traffic management using end-host-based elephant detection. In: 2011 Proceedings IEEE INFOCOM, pp. 1629–1637. IEEE (2011)

    Google Scholar 

  22. Chiesa, M., Kindler, G., Schapira, M.: Traffic engineering with equal-cost-multipath: an algorithmic perspective. IEEE/ACM Trans. Netw. 25(2), 779–792 (2016)

    Article  Google Scholar 

  23. Wang, S., Zhang, J., Huang, T., et al.: Fdalb: flow distribution aware load balancing for datacenter networks. In: 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS), pp. 1–2. IEEE (2016)

    Google Scholar 

  24. Lin, S.C., Akyildiz, I.F., Wang, P., et al.: QoS-aware adaptive routing in multi-layer hierarchical software defined networks: a reinforcement learning approach. In: 2016 IEEE International Conference on Services Computing (SCC), pp. 25–33. IEEE (2016)

    Google Scholar 

  25. Leconte, M., Paschos, G.S., Mertikopoulos, P., et al.: A resource allocation framework for network slicing. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp. 2177–2185. IEEE (2018)

    Google Scholar 

  26. Chen, L., Lingys, J., Chen, K., et al.: Auto: scaling deep reinforcement learning for datacenter-scale automatic traffic optimization. In: Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, pp. 191–205 (2018)

    Google Scholar 

  27. Gilmer, J., Schoenholz, S.S., Riley, P.F., et al.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272. PMLR (2017)

    Google Scholar 

  28. Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1871–1880 (2019)

    Google Scholar 

  29. Benesty, J., Chen, J., Huang, Y., et al.: Pearson correlation coefficient. In: Noise Reduction in Speech Processing, pp. 1-4. Springer, Heidelberg (2009)

    Google Scholar 

  30. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)

    Google Scholar 

  31. Leiserson, C.E.: Fat-trees: universal networks for hardware-efficient supercomputing. IEEE Trans. Comput. 100(10), 892–901 (1985)

    Article  Google Scholar 

  32. Zhang, J., Yu, F.R., Wang, S., et al.: Load balancing in data center networks: a survey. IEEE Commun. Surv. Tutorials 20(3), 2324–2352 (2018)

    Article  Google Scholar 

Download references

Acknowledgment

The work is supported in part by the national key research and development program of China under grant No. 2019YFB2102200, the Natural Science Foundation of China under Grant No. 61902062 and the Jiangsu Provincial Natural Science Foundation of China under Grant No. BK20190332.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Zhang or Weiwei Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, K., Xu, X., Fu, C., Wang, X., Wu, W. (2021). Modeling Data Center Networks with Message Passing Neural Network and Multi-task Learning. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2021. Communications in Computer and Information Science, vol 1449. Springer, Singapore. https://doi.org/10.1007/978-981-16-5188-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5188-5_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5187-8

  • Online ISBN: 978-981-16-5188-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics