Skip to main content

A Computational Model Based on Neural Network of Visual Cortex with Conceptors for Image Classification

  • Conference paper
  • First Online:
Book cover Neural Computing for Advanced Applications (NCAA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1449))

Included in the following conference series:

  • 1711 Accesses

Abstract

Artificial neural networks, especially for deep learning, has made great progress in image recognition in recent years. However, deep learning neural networks have the disadvantage of biologically implausibility and the excessive consumption of energy because of the non-local transmission of real-valued error signals and weights. With the rapid development of theories and applications in brain science, more and more researchers are paying attention to brain-inspired computational models in recent years. In this paper, we propose a novel computational model for image classification with conceptor networks and two visual cortex neural networks, including the primary visual layer (V1) and the feature orientation layer (V2). We have examined the performance of this model on the MNIST database, ORL face databases and CASIA-3D FaceV1 databases. Our model can achieve the same high classification accuracy with much fewer training samples than the other methods. Our results demonstrate that both of the orientation-selective characteristics of V2 layer and the feature detection of conceptors can provide remarkable contributions for efficient classification with small training samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR, vol. abs/1502.03167 (2015)

    Google Scholar 

  2. Ng, J.Y.-H., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R., Toderici, G.: Beyond short snippets: deep networks for video classification. CoRR, vol. abs/1503.08909 (2015)

    Google Scholar 

  3. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. CoRR, vol. abs/1503.03832 (2015)

    Google Scholar 

  4. Szegedy, C., et al.: Going deeper with convolutions. CoRR, vol. abs/1409.4842 (2014)

    Google Scholar 

  5. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  6. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., FeiFei, L.: Large-scale video classification with convolutional neural networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  7. Bishop, C.: Pattern Recognition and Machine Learning, pp. 140–155. Springer, New York (2006)

    MATH  Google Scholar 

  8. Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. ACM Trans. Intel. Syst. Technol. 2(3), 1–27 (2011)

    Article  Google Scholar 

  9. Mohamed, A.-R., Dahl, G.E., Hinton, G.: Acoustic modeling using deep belief networks. IEEE Trans. Audio Speech Language Process. 20(1), 14–22 (2012)

    Article  Google Scholar 

  10. Rumelhart, D.E., Hinton, G.E., Williams, R.J., et al.: Learning representations by back-propagating errors. Cognit. Model. 5(3), 1 (1988)

    MATH  Google Scholar 

  11. OReilly, R.C., Munakata, Y.: Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain. MIT Press, Cambridge (2000)

    Book  Google Scholar 

  12. Bogler, C., Bode, S., Haynes, J.D.: Orientation pop-out processing in human visual cortex. Neuroimage 81(6), 73–80 (2013)

    Article  Google Scholar 

  13. Simoncelli, E.P., Heeger, D.J.: A model of neuronal responses in visual area MT. Vis. Res. 38(5), 743–761 (1998)

    Article  Google Scholar 

  14. Miller, C.E., Shapiro, K.L., Luck, S.J.: Electrophysiological measurement of the effect of inter-stimulus competition on early cortical stages of human vision. Neuroimage 105, 229–237 (2015)

    Article  Google Scholar 

  15. Beyeler, M., Richert, M., Dutt, N.D., et al.: Efficient spiking neural network model of pattern motion selectivity in visual cortex. Neuroinformatics 12(3), 435–454 (2014)

    Article  Google Scholar 

  16. Kamitani, Y., Tong, F.: Decoding seen and attended motion directions from activity in the human visual cortex. Curr. Biol. 16(11), 1096–1102 (2006)

    Article  Google Scholar 

  17. Kamitani, Y., Tong, F.: Decoding the visual and subjective contents of the human brain. Nat. Neurosci. 8(5), 679–685 (2005)

    Article  Google Scholar 

  18. Beyeler, M., Oros, N., Dutt, N., et al.: A GPU-accelerated cortical neural network model for visually guided robot navigation. Neural Netw. 72, 75–87 (2015)

    Article  Google Scholar 

  19. Richert, M., Nageswaran, J.M., Dutt, N., et al.: An efficient simulation environment for modeling large-scale cortical processing. Front. Neuroinform. 5(19), 19 (2011)

    Google Scholar 

  20. Beyeler, M., Dutt, N.D., Krichmar, J.L.: Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule. Neural Netw. 48(10), 109–124 (2013)

    Article  Google Scholar 

  21. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)

    Article  Google Scholar 

  22. Jaeger, H.: Using conceptors to manage neural long-term memories for temporal patterns. J. Mach. Learn. Res. 18(13), 1–43 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003)

    Article  Google Scholar 

  24. Dayan, P., Abbott, L.: Theoretical neuroscience: computational and mathematical modeling of neural systems. Philos. Psychol. 15(1), 154–155 (2001)

    MATH  Google Scholar 

  25. Izhikevich, E.M., Gally, J.A., Edelman, G.M.: Spike-timing dynamics of neuronal groups. Cereb. Cortex 14(8), 933–944 (2004)

    Article  Google Scholar 

  26. Koch, C.: Biophysics of Computation: Information Processing in Single Neurons Computational Neuroscience Series. Oxford University Press, Oxford (1999)

    Google Scholar 

  27. Jaeger, H.: Controlling recurrent neural networks by conceptors (2014). arXiv:1403.3369

  28. Diehl, P.U., Neil, D., Binas, J., et al.: Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing. In: International Joint Conference on Neural Networks, pp. 1–8. IEEE (2015)

    Google Scholar 

  29. Peter, O., Daniel, N., Liu, S.C., et al.: Real-time classification and sensor fusion with a spiking deep belief network. Front. Neurosci. 7(7), 178 (2013)

    Google Scholar 

  30. Hu, Y., Ishwarya, M.S., Chu, K.L.: Classify images with conceptor network. Comput. Sci. (2015)

    Google Scholar 

  31. Qi, Y., Zhang, J.: (2D)2PCALDA: An Efficient Approach for Face Recognition. Elsevier Science Inc., Amsterdam (2009)

    Google Scholar 

  32. Kim, Y.G., Song, Y.J., Chang, U.D., et al.: Face recognition using a fusion method based on bidirectional 2DPCA. Appl. Math. Comput.. 205(2), 601–607 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Guo, G., Li, S.Z., Chan, K.: Proceedings of the Face Recognition by Support Vector Machines IEEE International Conference on Automatic Face and Gesture Recognition, 2000, pp. 196–201. IEEE (2002)

    Google Scholar 

  34. Li, G., Zhou, B., Su, Y.N.: Face recognition algorithm using two dimensional locality preserving projection in discrete wavelet domain. Open Automat. Contr. Syst. J. 7(1), 1721–1728 (2015)

    Article  Google Scholar 

  35. Braitenberg, V., Schz, A.: Cortex: Statistics and Geometry of Neuronal Connectivity. Springer, Heidelberg (1998)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiumin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Yu, J., Xu, W. (2021). A Computational Model Based on Neural Network of Visual Cortex with Conceptors for Image Classification. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2021. Communications in Computer and Information Science, vol 1449. Springer, Singapore. https://doi.org/10.1007/978-981-16-5188-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5188-5_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5187-8

  • Online ISBN: 978-981-16-5188-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics