Skip to main content

Privacy Protection Model for Blockchain Data Sharing Based on zk-SNARK

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1452))

Abstract

In the era of big data, data sharing and communication play a crucial role. The blockchain data sharing model based on ciphertext policy attributed-based encryption (CP-ABE) is an existing solution to data sharing. However, it puts the access policy and attributes directly on the blockchain, so every one in the blockchain can access these access policies and attributes, which will cause privacy leakage. To solve this problem, a privacy protection model based on zk-SNARK is proposed in this paper. The blockchain double-chain structure was applied in this model, and the fine-grained access control of data sharing was realized based on CP-ABE scheme. At the same time, zk-SNARK technologies were adopted to protect sensitive access policies and sensitive attributes from disclosure, effectively defending the privacy of users when data sharing in blockchain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for composite statements. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 643–673. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_22

    Chapter  Google Scholar 

  2. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure computational integrity. Eprint. Iacr. Org. 693423, 1–83 (2018)

    Google Scholar 

  3. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: Proceedings - IEEE Symposium on Security and Privacy, pp. 459–474 (2014)

    Google Scholar 

  4. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: International Workshop on Public Key Cryptography, pp. 53–70 (2011)

    Google Scholar 

  5. Bunz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: Proceedings - IEEE Symposium on Security and Privacy, 2018-May, pp. 315–334 (2018)

    Google Scholar 

  6. Camenisch, J., Dubovitskaya, M., Enderlein, R.R., Neven, G.: Oblivious transfer with hidden access control from attribute-based encryption. In: Visconti, I., Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 559–579. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_31

    Chapter  Google Scholar 

  7. Chen, J., Gong, J., Wee, H.: Improved Inner-Product Encryption with Adaptive Security and Full Attribute-Hiding. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 673–702. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_23

    Chapter  Google Scholar 

  8. Cui, H., Deng, R.H., Lai, J., Yi, X., Nepal, S.: An efficient and expressive ciphertext-policy attribute-based encryption scheme with partially hidden access structures, revisited. Comput. Netw. 133, 157–165 (2018)

    Article  Google Scholar 

  9. Fu, Y.: Research on supply chain information sharing mechanism and management mode based on blockchain. Doctor level of thesis. Central University of Finance and Economics (2018)

    Google Scholar 

  10. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge. In: Stanford Blockchain Conference, pp. 1–33 (2020)

    Google Scholar 

  11. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the ACM Conference on Computer and Communications Security, pp. 89–98 (2006)

    Google Scholar 

  12. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and Universal Common Reference Strings with Applications to zk-SNARKs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 698–728. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_24

    Chapter  Google Scholar 

  13. Guan, Z.: Efficient Privacy-Preserving Account-Model Blockchain Based on Zero-Knowledge Proof. Master level of thesis. ShanDong University (2020)

    Google Scholar 

  14. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4965 LNCS (2006), 146–162 (2008)

    Google Scholar 

  15. Khalil, R., Zamyatin, A., Felley, G., Gervais, A., Moreno-sanchez, P.: Commit-Chains: Secure, Scalable Off-Chain Payments. IACR Cryptology EPrint Archive (2018)

    Google Scholar 

  16. Li, G., He, D., Guo, B., Lu, S.: Blockchain privacy protection algorithms based on zero knowledge proof. J. Huazhong Univ. Sci. Technol. (Natural Science Edition), 48(7) (2020)

    Google Scholar 

  17. Petkus, M.: Why and How zk-SNARK Works. 1–65. http://arxiv.org/abs/1906.07221 (2019)

  18. Sahai, A., Waters, B.R.: Fuzzy identity based encryption. In: Proceedings of the 24th Annual International Conference on Theory and Applications of Cryptographic Techniques, pp. 1–9 (2005)

    Google Scholar 

  19. Sandborn, W., et al.: Sonic. Am. J. Gastroenterol. 103, S436 (2008)

    Article  Google Scholar 

  20. Wang, X., Jiang, X., Li, Y.: Model for data access control and sharing based on blockchain. J. Softw. 30(6), 1661–1669 (2019)

    MATH  Google Scholar 

  21. Wang, Y., Fan, K.: Effective CP-ABE with hidden access policy. J. Comput. Res. Develop. 56(10), 2151–2159 (2019)

    Google Scholar 

  22. Wei, X.: Research and Implementation of Anonymous Electronic Survey System Based on Non-Interactive Zero Knowledge. Master level of thesis. Northeastern University (2015)

    Google Scholar 

  23. Zhang, S., Ling, J., Chen, J.: Traceable blockchain ledger privacy protection scheme. Comput. Eng. Appl. (2020)

    Google Scholar 

Download references

Acknowledgment

This work is supported by the National Key Research and Development Program of China (No. 2017YFB1400700).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Zhang, G., Zhu, J., Wang, X. (2021). Privacy Protection Model for Blockchain Data Sharing Based on zk-SNARK. In: Zeng, J., Qin, P., Jing, W., Song, X., Lu, Z. (eds) Data Science. ICPCSEE 2021. Communications in Computer and Information Science, vol 1452. Springer, Singapore. https://doi.org/10.1007/978-981-16-5943-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5943-0_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5942-3

  • Online ISBN: 978-981-16-5943-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics