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Preface

A series of summerschools organized by the University of Science
and Technology in China germinated this book. It is a collection of
texts that are either ‘trend-setters’ or just good examples. A first
draft of this text was prepared in 2016 and 2017. It was substantially
updated in subsequent years.

This book provides an introduction to the research area of graph
algorithms and reviews the development over the last decade. The
contents is divided into parts titled ‘Graphs,” ‘Algorithms,” ‘Problem
Formulations,” and ‘Recent Trends.” The first part reviews some
graph - theoretic concepts. The second part presents a few early
highlights in graph algorithms. The third part is a very short
introduction into graph algebras and monadic second order - logic.
The last part of the book uses ‘treewidth’ as a stepping stone and
talks through a wide variety of recent trends.

The book assumes familiarity with a few basic concepts and
programming techniques that are taught during a first year computer
science course in algorithms. It provides a smooth introduction for
those who want to dive deep into this fascinating research area. The
book contains a lot of exercises, many up at present - day research
- level; they will keep the reader pleasantly entertained for many
hours.
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