A Guide to Graph Algorithms

Ton Kloks • Mingyu Xiao

A Guide to Graph Algorithms

Ton Kloks Computer Science and Engineering University of Electronic Science and Technology of China Chengdu, Sichuan, China Mingyu Xiao Computer Science and Engineering University of Electronic Science and Technology of China Chengdu, Sichuan, China

ISBN 978-981-16-6349-9 ISBN 978-981-16-6350-5 (eBook) https://doi.org/10.1007/978-981-16-6350-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Contents

Preface		ΧI
Acknow	ledgments	$\mathbf{X}\mathbf{V}$
Graphs		1
1.1	Isomorphic Graphs	2
1.2	Representing graphs	2
1.3	Neighborhoods	3
1.4	Connectedness	4
1.5	Induced Subgraphs	4
1.6	Paths and Cycles	5
1.7	Complements	7
1.8	Components	7
	1.8.1 Rem's Algorithm	7
1.9	Separators	10
1.10	Trees	10
1.11	Bipartite Graphs	12
1.12	Linegraphs	14
1.13	Cliques and Independent Sets	14
1.14	On Notations	15
Algorith	nms	17
2.1	Finding and counting small induced subgraphs	18
2.2	Bottleneck domination	20
2.3	The Bron & Kerbosch Algorithm	22
	2.3.1 A Time bound for the $B\&K$ –Algorithm .	28
2.4	Total Order!	30
	9.4.1 Hyporgraphs	2/

VI

	2.4.2	Problem Reductions	35
2.5	NP-C	ompleteness	38
	2.5.1	Equivalence covers of splitgraphs	39
2.6	Lovász	Local Lemma	42
	2.6.1	Bounds on dominating sets	46
	2.6.2	The Moser & Tardos algorithm	48
	2.6.3	Logs and witness trees	49
	2.6.4	A Galton - Watson branching process	52
2.7	Szeme	rédi's Regularity Lemma	54
	2.7.1	Construction of regular partitions	60
2.8	Edge -	thickness and stickiness	72
2.9	Clique	Separators	74
	2.9.1	Feasible Partitions	76
	2.9.2	Intermezzo	79
	2.9.3	Another Intermezzo: Trivially perfect graphs	80
2.10	Vertex	ranking	81
		Permutation graphs	81
	2.10.2	Separators in permutation graphs	82
	2.10.3	Vertex ranking of permutation graphs	83
2.11	Cograp	ohs	84
	2.11.1	Switching cographs	85
2.12	Param	eterized Algorithms	88
		ounded search technique	90
	2.13.1	Vertex cover	90
	2.13.2	Edge dominating set	91
		Feedback vertex set	92
	2.13.4	Further reading	95
2.14	Match	ings	96
2.15	Indepe	endent Set in Claw - Free Graphs	97
	2.15.1	The Blossom Algorithm	97
	2.15.2	Minty's Algorithm	100
	2.15.3	A Cute Lemma	101
	2.15.4	Edmonds' Graph	102
2.16		oes	104
2.17		le partition of planar graphs	106
	_	Intermezzo: PQ - trees	110
2.18		S	111
		Snake	112

Contents

	2.18.2	Grundy values	13
	2.18.3	De Bruijn's game	14
	2.18.4	Poset games	15
	2.18.5	Coin - turning games	16
	2.18.6	NIM - multiplication	18
	2.18.7		20
	2.18.8	Chomp	22
Problen	n Form	ulations 1	25
3.1	Graph	Algebras	25
3.2	Monac	dic Second – Order Logic	26
	3.2.1	Sentences and Expressions	26
	3.2.2	Quantification over Subsets of Edges 1	27
Recent	Trends	1	29
4.1	Triang	gulations	29
	4.1.1	Chordal Graphs	29
	4.1.2	Clique – Trees	32
4.2	Treew	idth	.34
	4.2.1	Treewidth and brambles	35
	4.2.2	Tree - decompositions	.37
	4.2.3	Example: Steiner tree	39
	4.2.4	Treewidth of Circle Graphs	45
4.3	On the	e treewidth of planar graphs	49
	4.3.1	Antipodalities	51
	4.3.2	Tilts and slopes	57
	4.3.3	Bond carvings	63
	4.3.4	Carvings and antipodalities	68
4.4	Tree -	degrees of graphs	74
	4.4.1	Intermezzo: Interval graphs	75
4.5	Modul	ar decomposition	.77
	4.5.1	Modular decomposition tree	79
	4.5.2	A linear - time modular decomposition 1	80
	4.5.3	Exercise	.87
4.6	Rankv	${ m vidth}$.87
	4.6.1	Distance hereditary - graphs	88
	4.6.2	* ~ -	90
	4.6.3	χ - Boundedness	91

VIII

	4.6.4	Governed decompositions	196
	4.6.5	Forward Ramsey splits	198
	4.6.6	Factorization of trees	199
	4.6.7	Kruskalian decompositions	203
	4.6.8	Exercise	204
4.7	Cluster	red coloring	205
	4.7.1	Bandwidth and ${\sf BFS}$ - trees with few leaves $$.	205
	4.7.2	Connected partitions	207
	4.7.3	A decomposition of K_t minor free graphs $$	210
	4.7.4	Further reading	211
4.8	Well -	Quasi Orders	213
	4.8.1	Higman's Lemma	213
	4.8.2	Kruskal's Theorem	215
	4.8.3	Gap embeddings	216
4.9	Thresh	nold graphs and threshold - width	217
	4.9.1	Threshold - width	218
	4.9.2	On the complexity of threshold - width	221
	4.9.3	A fixed - parameter algorithm for threshold -	
		width	222
4.10	Black a	and white - coloring	227
	4.10.1	The complexity of black and white - coloring	228
4.11	k - Cog	graphs	229
	4.11.1	Recognition of k -Cographs	231
	4.11.2	Recognition of k -Cographs — revisited	232
	4.11.3	Treewidth of Cographs	233
4.12	Minors	3	234
	4.12.1	The Graph Minor Theorem	235
4.13	Genera	al Partition Graphs	236
4.14	Tourna	aments	240
	4.14.1	Tournament games	240
	4.14.2	Trees in tournaments	242
	4.14.3	Immersions in tournaments	246
	4.14.4	Domination in tournaments	255
4.15	Immer	sions	259
	4.15.1	Intermezzo: Topological minors	259
	4.15.2		261
	4.15.3	Intermezzo on 2 - trees	262
		Series parallel - triples	263

Contents

	4.15.5	A well quasi - order for one way series parallel	
		- triples $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	268
	4.15.6	Series parallel separations	270
	4.15.7	$\operatorname{Coda}. \ . \ . \ . \ . \ . \ . \ . \ . \ . \$	275
	4.15.8	Exercise	281
4.16	Astero	idal sets	282
	4.16.1	AT - free graphs $\ \ \ldots \ \ \ldots \ \ \ldots \ \ \ldots$.	283
	4.16.2	Independent set in AT-free graphs \dots	283
	4.16.3	Exercise	285
	4.16.4	Bandwidth of AT-free graphs $\dots \dots$	286
	4.16.5	Dominating pairs	290
	4.16.6	Antimatroids	290
	4.16.7	Totally balanced matrices	292
	4.16.8	Triangle graphs	295
4.17	Sensiti	vity	296
	4.17.1	What happened earlier \dots	297
	4.17.2	Cauchy's interlace lemma	298
	4.17.3	${\bf Hypercubes} \ \dots \dots \dots \dots \dots \dots \dots$	298
	4.17.4	Möbius inversion	300
	4.17.5	The equivalence theorem $\dots \dots$.	301
	4.17.6	Further reading	304
4.18	Homor	morphisms	304
	4.18.1	Retracts	305
	4.18.2	Retracts in threshold graphs $\dots \dots$.	306
	4.18.3	Retracts in cographs	307
4.19	Produc	${\operatorname{cts}}$	312
	4.19.1	Categorical products of cographs \dots	313
	4.19.2	Tensor capacity	314
	4.19.3	Cartesian products	317
	4.19.4	Independence domination in cographs \dots	318
	4.19.5	$\theta_e(K_n\times K_n)$	319
4.20	Outerp	planar Graphs	321
	4.20.1	k – Outerplanar Graphs	322
	4.20.2	Courcelle's Theorem	323
	4.20.3	Approximations for Planar Graphs	323
	4.20.4	Independent Set in Planar Graphs $\ \ldots \ \ldots$	323
4.21	Graph	$isomorphism \dots \dots \dots \dots \dots \dots \dots \dots$	325

X	Contents
---	----------

Bibliography	327
Index	335

Preface

A series of summerschools organized by the University of Science and Technology in China germinated this book. It is a collection of texts that are either 'trend-setters' or just good examples. A first draft of this text was prepared in 2016 and 2017. It was substantially updated in subsequent years.

This book provides an introduction to the research area of graph algorithms and reviews the development over the last decade. The contents is divided into parts titled 'Graphs,' 'Algorithms,' 'Problem Formulations,' and 'Recent Trends.' The first part reviews some graph - theoretic concepts. The second part presents a few early highlights in graph algorithms. The third part is a very short introduction into graph algebras and monadic second order - logic. The last part of the book uses 'treewidth' as a stepping stone and talks through a wide variety of recent trends.

The book assumes familiarity with a few basic concepts and programming techniques that are taught during a first year computer science course in algorithms. It provides a smooth introduction for those who want to dive deep into this fascinating research area. The book contains a lot of exercises, many up at present - day research - level; they will keep the reader pleasantly entertained for many hours.

About the authors

Dr. Mingyu Xiao is a professor in the school of computer science and engineering, University of Electronic Science and Technology of China, Chengdu, China. He received his PhD in Computer Science from the Chinese University of Hong Kong in 2008.

Dr. Ton Kloks is a researcher of graph algorithms. He studied mathematics at Eindhoven University in the Netherlands during the 1980s. He received his PhD in Computer Science from Utrecht University in The Netherlands in 1993 for his thesis on treewidth.

Acknowledgments

AN INVITATION by Dr. Mingyu Xiao, to introduce second and third year students of his department during a one - week - course to graph algorithmics, led me — Ton Kloks — to write a first draft of this text that lies before you now. I am grateful to my wife, to Mingyu Xiao, and to the University of Electronic Science and Technology of China for giving me this opportunity.

This text originated in 2016 – 2017, and was substantially updated during the summers of 2018, 2019, 2020 and 2021.