K. Z. Najiya, Munnu Sonkar and C. S. Sastry Department of Mathematics Indian Institute of Technology, Hyderabad, 502285, India. Email:{ma17resch01001, ma17resch11004 and csastry}@iith.ac.in

Abstract—Prior support constrained compressed sensing, achieved via the weighted norm minimization, has of late become popular due to its potential for applications. For the weighted norm minimization problem,

 $min||x||_{p,w}$ subject to $y = Ax$, $p = 0, 1$, and $w \in [0, 1]$,

uniqueness results are known when $w = 0, 1$. Here, $||x||_{p,w} =$ $w\|x_T\|_p + \|x_{T^c}\|_p, p = 0, 1$ with T representing the partial support information. The work reported in this paper presents the conditions that ensure the uniqueness of the solution of this problem for general $w \in [0, 1]$.

I. INTRODUCTION

In Compressed Sensing (CS), a sparse signal $x \in \mathbb{R}^n$ can be recovered from a small set of measurements $y \in \mathbb{R}^m$ satisfying $y = Ax$ with $k \ll m$, where k is the number of nonzero elements in x . The results that guarantee the uniqueness of the recovery process depend on the restricted isometry property (RIP) of the sensing matrix A [\[3\]](#page-3-0)[\[4\]](#page-3-1)[\[8\]](#page-3-2). In many applications, one obtains some a priori information about the partial support of the sparse solution to be recovered. For instance, in applications involving recovering time-correlated signals [\[9\]](#page-3-3), prior-support constrained sparse recovery attains importance. In recent years, compressed sensing with a priori support information has caught the attention of several researchers [\[9\]](#page-3-3)[\[5\]](#page-3-4)[\[6\]](#page-3-5)[\[10\]](#page-3-6), to name a few. The weighted norm minimization aims at providing signals, satisfying the data constraint, that are sparse inside and sparsest outside a given prior support. In [\[9\]](#page-3-3), the authors have modified the 1-norm by taking zero weights on the known partial support, minimizing thereby the terms in the complement of prior support set. The results in [\[9\]](#page-3-3) have presented the uniqueness of solution of weighted norm minimization under the stated conditions. When all the weights are set to 1, the weighted 0-norm and the weighted 1-norm problems coincide respectively with their standard 0-norm and 1-norm counterparts, whose exact recovery conditions have been established in [\[1\]](#page-3-7). The authors of [\[5\]](#page-3-4)[\[7\]](#page-3-8) have established the stability of recovery in noisy-setting for weighted 1-norm minimization problem. To the best of our knowledge, however, the uniqueness of the solution of the general weighted 0-norm and weighted 1-norm minimization problems has not been proposed to date. Motivated by this, the present work proposes sufficient conditions for the uniqueness of the solution of the weighted 0,1-norm minimization problems. We show that our conditions mostly coincide with those of known cases when the weights are 0, 1.

The paper is organized as 6 sections. In sections 2 and 3, we provide basic introduction to Compressed Sensing and existing uniqueness results respectively. In sections 4 and 5, we discuss the uniqueness results with general weights for 0-norm and 1 norm problems respectively. The paper ends with concluding remarks in section 6.

II. COMPRESSED SENSING

Compressive sensing (CS) [\[3\]](#page-3-0) is a technique that reconstructs a signal, which is compressible or sparse in some domain, from a small set of linear measurements. Let \sum_{k}^{n} := ${x \in \mathbf{R}^n : ||x||_0 \le k}$ be the set of all k-sparse signals in \mathbf{R}^n . Here $||x||_0 = |\{i : x_i \neq 0\}|$ stands for the number of nonzero components in x . For simplicity in notation, we represent the set $\{1, 2, \ldots, n\}$ as $[n]$. For $A \in \mathbb{R}^{m \times n}$ with $m \ll n$, suppose $y = Ax$. One may recover the sparsest solution of this system from the following minimization problem :

$$
(P_0) \ \min\|x\|_0 \ \ \text{subject to} \ \ y = Ax. \tag{1}
$$

Since l_0 minimization problem becomes NP-hard as the dimension increases, the convex relaxation of l_0 problem has been proposed as

$$
(P_1) \ \min\|x\|_1 \ \ \text{subject to} \ \ y = Ax. \tag{2}
$$

The coherence $\mu(A)$ of a matrix A is the largest absolute normalized inner product between different columns of it, that is,

$$
\mu(A) = \max_{1 \le i,j \le n, i \ne j} \frac{|a_i^T a_j|}{\|a_i\|_2 \|a_j\|_2},
$$

where a_i denotes the *i*-th column in A.

The k-th restricted isometry property (k-RIP) constant δ_k of a matrix A is the smallest real number such that

$$
(1 - \delta_k) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta_k) \|x\|_2^2,
$$

for all x such that $||x||_0 \le k < n$. The restricted orthogonality constant $\theta_{s,\tilde{s}}$ of a matrix A is the smallest real number such that

$$
|\eta' A'_T A_{\tilde{T}} \tilde{\eta}| \le \theta_{s,\tilde{s}} \|\eta\|_2 \|\tilde{\eta}\|_2,
$$

for all disjoint sets T and \tilde{T} with $|T| \leq s$ and $|\tilde{T}| \leq \tilde{s}$ such that $s + \tilde{s} \leq n$ and for all vectors $\eta \in \mathbb{R}^{|T|}$ and $\tilde{\eta} \in \mathbb{R}^{|T|}$. Here, A_T denotes the restriction of the matrix A to the columns corresponding to the indices in $T \subseteq [n]$. For simplicity, we denote $\theta_s := \theta_{s,s}$. In [\[1\]](#page-3-7), E. Candes and T. Tao have given the

conditions for the exact recovery of x from the pair (A, y) in terms of Restricted Isometry Constant (RIC) for [\(1\)](#page-0-0) and [\(2\)](#page-0-1). These results, stated in our notation, are as follows:

Theorem 1. *(E. Candes et. al. [\[1\]](#page-3-7)): Suppose that* $s \geq 1$ *is such that*

$$
\delta_{2s} < 1
$$

and let $N \subseteq [n]$ *be such that* $|N| \leq s$ *. Let* $y := Ax$ *, where* x *is an arbitrary vector supported on* N*. Then* x *is the unique minimizer to [\(1\)](#page-0-0) so that* x *can be reconstructed from knowledge of the vector y (and* a_i *'s).*

Theorem 2. *(E. Candes et. al. [\[1\]](#page-3-7)): Suppose that* $s \geq 1$ *is such that*

$$
\delta_s+\theta_{s,s}+\theta_{2s,s}<1
$$

and let x *be a real vector supported on a set* $N \subseteq [n]$ *obeying* $|N| \leq s$ *. Put* $y := Ax$ *. Then* x *is unique minimizer to [\(2\)](#page-0-1)*. \Box

D. Donoho and X. Huo [\[2\]](#page-3-9) have shown the exact recovery condition for P_1 in terms of mutual coherence. If x is a k sparse vector and matrix A is k-RIP compliant, $k < \frac{1}{2} \left(1 + \frac{1}{\mu} \right)$ is an exact recovery condition for P_1 problem. The following result is relevant to the objective of present work.

Lemma 3. *(E. Candes et. al. [\[1\]](#page-3-7)): Let* $s \geq 1$ *be such that* $\delta_s + \theta_{s,2s} < 1$, and c be a real vector supported on $N \subseteq [n]$ *obeying* $|N| \leq s$. Then there exists a vector $\gamma \in \mathbb{R}^n$ such that $\gamma' a_i = c_i$ for all $i \in N$ where a_i is the i^{th} column of a matrix $A \in \mathbb{R}^{m \times n}$. Furthermore, γ obeys

$$
| < \gamma, a_i > \vert \leq \frac{\theta_s}{(1 - \delta_s - \theta_{s, 2s})\sqrt{s}} \cdot \Vert c \Vert, \ \forall i \notin N. \tag{3}
$$

III. COMPRESSED SENSING WITH PARTIAL SUPPORT CONSTRAINT

It may be noted that the reconstruction method given by P_1 in [\(2\)](#page-0-1) is nonadaptive as no information about x is used in P_1 . It can, however, be made partially adaptive by imposing constraints on the support of the solution to be obtained. In [\[9\]](#page-3-3)[\[5\]](#page-3-4)[\[7\]](#page-3-8) (and the references therein) the authors have modified the cost function of P_1 problem by incorporating the partial support information into the reconstruction process as detailed below.

Consider that T is the known partial support information of signal x. Here T is considered in general sense that it can have an error part which corresponds to the complement of support of x. In [\[9\]](#page-3-3), the authors have modified the P_0 problem by considering zero weights in T and posed it as follows:

$$
min||x_{T^c}||_0 \text{ subject to } y = Ax. \tag{4}
$$

This problem recovers a signal that satisfies the data constraint and whose support is sparsest outside T . The following result in [\[9\]](#page-3-3) establishes the uniqueness of [\(4\)](#page-1-0).

Theorem 4. *(N. Vasawani et. al. [\[9\]](#page-3-3)): Given a sparse vector* x with support $N = T \cup \Delta/\Delta_e$ where Δ and T are unknown *and known disjoint supports respectively, and* Δ_e *is the error in known support such that* $\Delta_e \subseteq T$ *. Consider reconstructing*

it from $y = Ax$ *by solving [\(4\)](#page-1-0). Then* x *is the unique minimizer of* [\(4\)](#page-1-0) if $\delta_{k+2u} < 1$ *,where* $k := |T|$ *and* $u := |\Delta|$ *.* □

In [\[9\]](#page-3-3), the authors have also considered the convex relaxation of (4) as

$$
min||x_{Tc||1 subject to y = Ax.
$$
 (5)

The uniqueness condition of [\(5\)](#page-1-1) has been established by the following results.

Theorem 5. *(N. Vasawani et. al. [\[9\]](#page-3-3)): Given a sparse vector* x *whose support* $N = T \cup \Delta/\Delta_e$ *where* Δ *and* T *are unknown and known disjoint supports respectively, and* Δ_e *is the error in known support such that* $\Delta_e \subseteq T$ *. Consider reconstructing it from* $y = Ax$ *by solving [\(5\)](#page-1-1). Then* x *is the unique minimizer of [\(5\)](#page-1-1) if*

1)
$$
\delta_{k+u} < 1
$$
 and $\delta_{2u} + \delta_k + \theta_{k,2u}^2 < 1$,
\n2) $\rho_k(2u, u) + \rho_k(u, u) < 1$, with $\rho_k(s, \tilde{s}) := \frac{\theta_{\tilde{s},s} + \frac{\theta_{\tilde{s},k}\theta_{s,k}}{1 - \delta_k}}{1 - \delta_s - \frac{\theta_{\tilde{s},k}}{1 - \delta_k}}$,
\nwhere $s := |N|$, $k := |T|$ and $u := |\Delta|$.

Corollary 6. *(N. Vasawani et. al. [\[9\]](#page-3-3)): Given a sparse vector,* x, whose support $N = T \cup \Delta/\Delta_e$ where Δ and T are unknown *and known disjoint supports respectively, and* Δ_e *is the error in known support such that* $\Delta_e \subseteq T$ *. Consider reconstructing it from* $y = Ax$ *by solving [\(5\)](#page-1-1). Then* x *is the unique minimizer of* [\(5\)](#page-1-1) if $u \leq k$ *and* $\delta_{k+2u} < \frac{1}{5}$ *.* \Box

Since sparsity of a signal inside T is unconstrained in [\(4\)](#page-1-0), the recovered signal may not be sparse in T . In order to recover a signal, satisfying the data constraint, which is in general sparse inside T and sparsest outside T , one may choose general weights $w \in [0, 1]$ and propose the general weighted-zeronorm problem:

$$
(P_{0,w}) \ \ min\|x\|_{0,w} \ \ subject \ to \ \ y = Ax,\tag{6}
$$

where $||x||_{0,w} = w||x_T||_0 + ||x_T||_0$. It may be noted that when $w = 0$, $P_{0,w}$ coincides with [\(4\)](#page-1-0) and when $w = 1$, it coincides with the standard P_0 problem [\(1\)](#page-0-0). As stated in previous section, the uniqueness results in these two cases are established by Theorem [4](#page-1-2) and Theorem [1](#page-1-3) respectively. In [\[5\]](#page-3-4), nevertheless, the authors have convexified this problem for a general weight vector $w \in [0, 1]$ and an arbitrary subset T of $[n]$ the following way:

$$
(P_{1,w}) \quad min||x||_{1,w} \quad subject \quad to \quad y = Ax, \tag{7}
$$

where
$$
||x||_{1,w} := \sum_i w_i |x_i|
$$
 with $w_i = \begin{cases} w & \text{for } i \in T \\ 1 & \text{for } i \notin T \end{cases}$.

In general, in applications, T can be drawn from the estimate of the support of signal or from its largest coefficients. It has been shown in [\[5\]](#page-3-4) that a signal x can be stably and robustly recovered from $P_{1,w}$ problem in noisy case if at least 50% of the partial support information is accurate. The uniqueness result in Theorem [5](#page-1-4) holds in a case when w is set to 0 in $P_{1,w}$. In the case, where $w = 1$, however, $P_{1,w}$ coincides with P_1 . To the best of our knowledge, the uniqueness of solution of $P_{p,w}$, with $p = 0, 1$, is not known for $w \in (0, 1)$. The present work aims at providing the stated uniqueness in the cases complementary to the known cases (viz, $w = 0, 1$).

IV. UNIQUENESS OF SOLUTION OF WEIGHTED 0-NORM PROBLEM

Our uniqueness result for weighted 0-norm minimization may be summarized in the form of following theorem, which is motivated by the results in [\[9\]](#page-3-3).

Theorem 7. Let x be a real sparse vector supported on $N \subseteq$ $[n]$ *with* $|N| = s$ *and* $y = Ax$ *, where* $A \in \mathbb{R}^{m \times n}$ *with* $m < n$ *. Let* $T \subseteq [n]$ *, with* $|T| = k$ *and* $\Delta_1 = T \cap N$ *with* $|\Delta_1| = t$ *and* $\Delta = T^c \cap N$ *with* $|\Delta| = u$ *. If*

$$
\delta_{k+2u+\lceil wt \rceil} < 1,\tag{8}
$$

then x is the unique minimizer to the $P_{0,w}$ *problem in* [\(6\)](#page-1-5) *for* $0 \leq w \leq 1$.

Proof: Let \tilde{x} be a minimizer of [\(6\)](#page-1-5). Then, $\|\tilde{x}\|_{0,w} \leq \|x\|_{0,w}$, which implies that $\|\tilde{x}_{T^c}\|_0 \leq w\|x_T\|_0 + \|x_{T^c}\|_0 - w\|\tilde{x}_T\|_0 \leq$ $w\|x_T\|_0 + \|x_{T^c}\|_0 \leq wt + u$. Hence, \tilde{x}_{T^c} has at most $wt + u$ number of non-zero elements. Therefore \tilde{x} remains supported on a subset of T of cardinality at most k and and on a set $\tilde{\Delta} \subseteq T^c$ of cardinality at most $wt + u$. Similarly x is also supported on a subset $\Delta_1 \subseteq T$ of cardinality $t \leq k$ and on a set $\Delta \subseteq T^c$ of cardinality at most u. Then the support of $\tilde{x} - x$ remains contained in the union $T \cup \Delta \cup \tilde{\Delta}$, which is of cardinality at most $k + u + wt + u = k + 2u + wt$. Now $A(\tilde{x} - x) = 0$ reduces to $A_{T\cup \Delta \cup \tilde{\Delta}}(\tilde{x} - x) = 0$. As $0 < \delta_{k+2u+[wt]} < 1$, $A_{T\cup \Delta \cup \tilde{\Delta}}$ is a full rank matrix, which implies that $\tilde{x} = x$.

Remark 1. *Here the ceiling operation* $\lceil wt \rceil$ *is used to take the smallest integer greater than or equal to the real number* wt*.*

Remark 2. *When* w = 1*, the weighted* 0*-norm problem coincides with the standard* 0-norm problem in [\(1\)](#page-0-0) and $k +$ $2u+wt = k-t+2(t+u) = 2s+e$ *with* $e = |T \cap N^c|$ *. Further, if* $T \subseteq N$ then $e = 0$. Hence $\delta_{k+2u+ \lceil wt \rceil} < 1$ *coincides with the uniqueness condition* δ_{2s} < 1 *of the standard* 0*-norm problem in [\(1\)](#page-0-0).*

When $w = 0$ *, the weighted* 0-norm problem coincides with *the* 0*-norm problem in [\(4\)](#page-1-0) and the uniqueness condition in [\(8\)](#page-2-0) of the weighted 0-norm problem coincides with* $\delta_{k+2u} < 1$ *of Theorem [4.](#page-1-2)*

V. UNIQUENESS OF SOLUTION OF WEIGHTED 1-NORM PROBLEM

Our uniqueness result for weighted 1-norm minimization is established with the help of following lemma:

Lemma 8. Let $x \in \mathbb{R}^n$ be a real sparse vector supported on $N \subseteq [n]$ *with* $|N| = s$ *and* $A \in \mathbb{R}^{m \times n}$ *with* $m < n$ *. Let* $c \in \mathbb{R}^n$ *be such that*

$$
c_i = \begin{cases} w \cdot sgn(x_i) & \text{for } i \in T \\ sgn(x_i) & \text{for } i \in \Delta \\ 0 & \text{otherwise,} \end{cases}
$$

where $T \subseteq [n]$ *with* $|T| = k$, $\Delta = T^c \cap N$ *with* $|\Delta| = u$ *and* $w \in [0, 1]$ *. If*

$$
\left(\sqrt{\frac{k w^2 + u}{k + u}}\right) \theta_{k+u} + \delta_{k+u} + \theta_{k+u, 2(k+u)} < 1,\qquad(9)
$$

then there exists a vector $\gamma \in \mathbb{R}^n$ *such that*

1)
$$
\gamma' a_i = w \cdot sgn(x_i)
$$
 for $i \in T$
\n2) $\gamma' a_i = sgn(x_i)$ for $i \in \Delta$
\n3) $|\gamma' a_i| < 1$ for $i \in (T \cup \Delta)^c$.

Proof: Since $\delta_{k+u} + \theta_{k+u,2(k+u)} < 1$ follows from [\(9\)](#page-2-1), Lemma [3](#page-1-6) implies that there exists a vector $\gamma \in \mathbb{R}^n$ such that $\gamma' a_i = c_i$ for $i \in T \cup \Delta$, that is, $\gamma' a_i = w \cdot sgn(x_i)$ for $i \in T$ and $\gamma' a_i = sgn(x_i)$ for $i \in \Delta$. Again, from [\(3\)](#page-1-7) and [\(9\)](#page-2-1), we have

$$
|\gamma' a_i| \le \frac{\theta_{k+u} ||c||}{(1 - \delta_{k+u} - \theta_{k+u,2(k+u)})\sqrt{k+u}} \\
= \frac{\theta_{k+u}(\sqrt{kw^2 + u})}{(1 - \delta_{k+u} - \theta_{k+u,2(k+u)})\sqrt{k+u}} < 1. \quad \Box
$$

The following result summarizes the uniqueness of solution of weighted 1-norm minimization problem, whose proof is motivated by the results in [\[1\]](#page-3-7).

Theorem 9. Let x be a real sparse vector supported on $N \subseteq$ $[n]$ *with* $|N| = s$ *and* $y = Ax$ *, where* $A \in \mathbb{R}^{m \times n}$ *with* $m < n$ *.* Let $T \subseteq [n]$ *with* $|T| = k$ *and* $\Delta = T^c \cap N$ *with* $|\Delta| = u$ *. If*

$$
\left(\sqrt{\frac{kw^2+u}{k+u}}\right)\theta_{k+u} + \delta_{k+u} + \theta_{k+u,2(k+u)} < 1,\qquad(10)
$$

then x is the unique minimizer to the $P_{1,w}$ *problem in [\(7\)](#page-1-8) for* $0 \leq w \leq 1$.

Proof : By standard convex arguments, there exists one minimizer \tilde{x} to the problem [\(7\)](#page-1-8), which implies that $\|\tilde{x}\|_{1,w} \leq$ $||x||_{1,w}$. Note that $x_i = 0$ for $i \in (T \cup N)^c \subseteq N^c$. We have

$$
\|\tilde{x}\|_{1,w} = \sum_{i \in T} w|\tilde{x}_i| + \sum_{i \in T^c} |\tilde{x}_i| \n= \sum_{i \in T} w|\tilde{x}_i| + \sum_{i \in \Delta} |\tilde{x}_i| + \sum_{i \in (T \cup \Delta)^c} |\tilde{x}_i| \n= \sum_{i \in T} w|x_i + \tilde{x}_i - x_i| + \sum_{i \in \Delta} |x_i + \tilde{x}_i - x_i| \n+ \sum_{i \in (T \cup \Delta)^c} |\tilde{x}_i - x_i| \n\ge \sum_{i \in T} w \cdot sgn(x_i)(x_i + \tilde{x}_i - x_i) \n+ \sum_{i \in \Delta} sgn(x_i)(x_i + \tilde{x}_i - x_i) + \sum_{i \in (T \cup \Delta)^c} (\tilde{x}_i - x_i) \n= \sum_{i \in T} w|x_i| + \sum_{i \in \Delta} |x_i| + \sum_{i \in T} w \cdot sgn(x_i)(\tilde{x}_i - x_i) \n+ \sum_{i \in \Delta} sgn(x_i)(\tilde{x}_i - x_i) + \sum_{i \in (T \cup \Delta)^c} (\tilde{x}_i - x_i) \n\ge ||x||_{1,w} + \sum_{i \in T} \gamma' a_i(\tilde{x}_i - x_i) + \sum_{i \in \Delta} \gamma' a_i(\tilde{x}_i - x_i) \n+ \sum_{i \in (T \cup \Delta)^c} \gamma' a_i(\tilde{x}_i - x_i) \n= ||x||_{1,w} + \gamma' A(\tilde{x} - x) = ||x||_{1,w}.
$$
\n(11)

In the above chain of steps, the vector $\gamma \in \mathbb{R}^n$ is supposed to satisfy the following properties:

1) $\gamma' a_i = w \cdot sgn(x_i)$ for $i \in T$

2)
$$
\gamma' a_i = sgn(x_i)
$$
 for $i \in \Delta$

3) $|\gamma' a_i| < 1$ for $i \in (T \cup \Delta)^c$.

In view of [\(10\)](#page-2-2), the existence of such a vector γ is guaranteed by Lemma [8.](#page-2-3) From [\(11\)](#page-2-4), it follows that $\|\tilde{x}\|_{1,w} = \|x\|_{1,w}$. Consequently, all the inequalities in [\(11\)](#page-2-4) must be equalities. But then $\sum_{i \in (T \cup \Delta)^c} |\tilde{x}_i| = \sum_{i \in (T \cup \Delta)^c} (\gamma' a_i) \tilde{x}_i$ implies that $\tilde{x}_i = 0$ on $(T\cup \Delta)^c$ as $|\gamma' a_i| < 1$ on $(T\cup \Delta)^c$. Now $Ax = A\tilde{x}$ reduces to $A_{T\cup\Delta}(x-\tilde{x}) = 0$. By [\(10\)](#page-2-2), we have δ_{k+u} < 1 which implies that $\tilde{x}_i = x_i$ on $T \cup \Delta$. Thus $\tilde{x} = x$ as claimed. claimed.

Remark 3. *When* w = 1*, the weighted* 1*-norm problem coincides with the standard* 1-norm problem in [\(2\)](#page-0-1) and $k+u$ $t + u + k - t = s + e$, where $t = |T \cap N|$ and $e = |T \cap N^c|$. *Further, if* $T \subseteq N$ *then* $e = 0$ *. In this case,* $k+u$ *coincides with* s *and the uniqueness condition [\(10\)](#page-2-2) of Theorem [9](#page-2-5) coincides with the uniqueness condition* $\theta_s + \delta_s + \theta_{s,2s} < 1$ *of the standard* 1*-norm problem.*

When w = 0*, the weighted* 1*-norm problem coincides with* 1*-norm problem [\(5\)](#page-1-1), and the uniqueness condition gets reduces to*

$$
\left(\sqrt{\frac{u}{k+u}}\right)\theta_{k+u} + \delta_{k+u} + \theta_{k+u,2(k+u)} < 1. \tag{12}
$$

As such, it is not possible to compare the above condition to the uniqueness condition of Theorem [5.](#page-1-4) This is because, the proofs of both adopt different strategies. In order to deduce a condition from [\(12\)](#page-3-10) in terms of RIC (that is akin to the condition in Corollary [6\)](#page-1-9)*, we use the inequality* $\theta_{s,\tilde{s}} \leq \delta_{s+\tilde{s}}$ *. Then,* $\theta_{k+u} \leq \delta_{2(k+u)}$ *and* $\theta_{k+u,2(k+u)} \leq \delta_{3(k+u)}$ *. Again if* $u \leq k$, then $\frac{u}{k+u} \leq \frac{1}{2}$. Hence, [\(12\)](#page-3-10) holds if $\left(\frac{1}{\sqrt{k}}\right)$ $(\frac{1}{2}+2)\delta_{3(k+u)}<$ 1*, that is,* $\delta_{3(k+u)} < \frac{\sqrt{2}}{1+2\sqrt{2}} \approx 0.369$.

VI. CONCLUSION

The current work has proposed the conditions that guarantee the uniqueness of solution of weighted 0-norm and weighted 1-norm minimization problems for $w \in [0,1]$. It has been analyzed further that the uniqueness conditions match with their known counterparts in the particular cases where (i). $w = 0, 1$ with 0-norm, (ii). $w = 1$ with 1-norm. In the case where $w = 0$ with 1-norm, however, our RIC-condition does not exactly match with its corresponding known condition.

Acknowledgments: The first author is thankful to UGC, Govt. of India, (JRF/2016/409284), for its financial support. The second author is thankful for the support that he receives from MHRD, Government of India.

REFERENCES

- [1] Emmanuel Candes and Terence Tao. Decoding by linear programming. *arXiv preprint math/0502327*, 2005.
- [2] David L Donoho and Xiaoming Huo. Uncertainty principles and ideal atomic decomposition. *IEEE transactions on information theory*, 47(7):2845–2862, 2001.
- [3] Michael Elad. *Sparse and redundant representations: from theory to applications in signal and image processing*. Springer Science & Business Media, 2010.
- [4] Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing. *Bull. Am. Math*, 54:151–165, 2017.
- [5] Michael P Friedlander, Hassan Mansour, Rayan Saab, and Özgür Yilmaz. Recovering compressively sampled signals using partial support information. *IEEE Transactions on Information Theory*, 58(2):1122– 1134, 2011.
- [6] Laurent Jacques. A short note on compressed sensing with partially known signal support. *Signal Processing*, 90(12):3308–3312, 2010.
- [7] Haixiao Liu, Bin Song, Fang Tian, and Hao Qin. Compressed sensing with partial support information: coherence-based performance guarantees and alternative direction method of multiplier reconstruction algorithm. *IET Signal Processing*, 8(7):749–758, 2014.
- [8] R Ramu Naidu, Phanindra Jampana, and Challa S Sastry. Deterministic compressed sensing matrices: Construction via euler squares and applications. *IEEE Transactions on Signal Processing*, 64(14):3566–3575, 2016.
- [9] Namrata Vaswani and Wei Lu. Modified-cs: Modifying compressive sensing for problems with partially known support. *IEEE Transactions on Signal Processing*, 58(9):4595–4607, 2010.
- [10] R Von Borries, C Jacques Miosso, and C Potes. Compressed sensing using prior information. In *2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing*, pages 121–124. IEEE, 2007.