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Abstract—Prior support constrained compressed sensing,
achieved via the weighted norm minimization, has of late become
popular due to its potential for applications. For the weighted
norm minimization problem,

min‖x‖p,w subject to y = Ax, p = 0, 1, and w ∈ [0, 1],

uniqueness results are known when w = 0, 1. Here, ‖x‖p,w =
w‖xT ‖p + ‖xTc‖p, p = 0, 1 with T representing the partial
support information. The work reported in this paper presents
the conditions that ensure the uniqueness of the solution of this
problem for general w ∈ [0, 1].

I. INTRODUCTION

In Compressed Sensing (CS), a sparse signal x ∈ R
n can be

recovered from a small set of measurements y ∈ R
m satisfying

y = Ax with k ≪ m, where k is the number of nonzero

elements in x. The results that guarantee the uniqueness of the

recovery process depend on the restricted isometry property

(RIP) of the sensing matrix A [3][4][8]. In many applications,

one obtains some a priori information about the partial sup-

port of the sparse solution to be recovered. For instance, in

applications involving recovering time-correlated signals [9],

prior-support constrained sparse recovery attains importance.

In recent years, compressed sensing with a priori support

information has caught the attention of several researchers

[9][5][6][10], to name a few. The weighted norm minimization

aims at providing signals, satisfying the data constraint, that

are sparse inside and sparsest outside a given prior support.

In [9], the authors have modified the 1-norm by taking zero

weights on the known partial support, minimizing thereby the

terms in the complement of prior support set. The results in [9]

have presented the uniqueness of solution of weighted norm

minimization under the stated conditions. When all the weights

are set to 1, the weighted 0-norm and the weighted 1-norm

problems coincide respectively with their standard 0-norm and

1-norm counterparts, whose exact recovery conditions have

been established in [1]. The authors of [5][7] have established

the stability of recovery in noisy-setting for weighted 1-norm

minimization problem. To the best of our knowledge, however,

the uniqueness of the solution of the general weighted 0-norm

and weighted 1-norm minimization problems has not been

proposed to date. Motivated by this, the present work proposes

sufficient conditions for the uniqueness of the solution of the

weighted 0,1-norm minimization problems. We show that our

conditions mostly coincide with those of known cases when

the weights are 0, 1.

The paper is organized as 6 sections. In sections 2 and 3, we

provide basic introduction to Compressed Sensing and existing

uniqueness results respectively. In sections 4 and 5, we discuss

the uniqueness results with general weights for 0-norm and 1-

norm problems respectively. The paper ends with concluding

remarks in section 6.

II. COMPRESSED SENSING

Compressive sensing (CS) [3] is a technique that recon-

structs a signal, which is compressible or sparse in some

domain, from a small set of linear measurements. Let
∑n

k :=
{x ∈ R

n : ‖x‖0 ≤ k} be the set of all k-sparse signals in R
n.

Here ‖x‖0 = |{i : xi 6= 0}| stands for the number of nonzero

components in x. For simplicity in notation, we represent the

set {1, 2, . . . , n} as [n]. For A ∈ R
m×n with m << n,

suppose y = Ax. One may recover the sparsest solution of

this system from the following minimization problem :

(P0) min‖x‖0 subject to y = Ax. (1)

Since l0 minimization problem becomes NP-hard as the di-

mension increases, the convex relaxation of l0 problem has

been proposed as

(P1) min‖x‖1 subject to y = Ax. (2)

The coherence µ(A) of a matrix A is the largest absolute

normalized inner product between different columns of it, that

is,

µ(A) = max
1≤i,j≤n, i6=j

|aTi aj |
‖ai‖2‖aj‖2

,

where ai denotes the i-th column in A.

The k-th restricted isometry property (k-RIP) constant δk
of a matrix A is the smallest real number such that

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22,

for all x such that ‖x‖0 ≤ k < n. The restricted orthogonality

constant θs,s̃ of a matrix A is the smallest real number such

that

|η′A′
TAT̃ η̃| ≤ θs,s̃‖η‖2‖η̃‖2,

for all disjoint sets T and T̃ with |T | ≤ s and |T̃ | ≤ s̃ such that

s + s̃ ≤ n and for all vectors η ∈ R
|T | and η̃ ∈ R

|T̃ |. Here,

AT denotes the restriction of the matrix A to the columns

corresponding to the indices in T ⊆ [n]. For simplicity, we

denote θs := θs,s . In [1], E. Candes and T. Tao have given the
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conditions for the exact recovery of x from the pair (A, y) in

terms of Restricted Isometry Constant (RIC) for (1) and (2).

These results, stated in our notation, are as follows:

Theorem 1. (E. Candes et. al. [1]): Suppose that s ≥ 1 is

such that

δ2s < 1

and let N ⊆ [n] be such that |N | ≤ s. Let y := Ax,

where x is an arbitrary vector supported on N . Then x is

the unique minimizer to (1) so that x can be reconstructed

from knowledge of the vector y (and ai
′s).

Theorem 2. (E. Candes et. al. [1]): Suppose that s ≥ 1 is

such that

δs + θs,s + θ2s,s < 1

and let x be a real vector supported on a set N ⊆ [n] obeying

|N | ≤ s. Put y := Ax. Then x is unique minimizer to (2).

D. Donoho and X. Huo [2] have shown the exact recovery

condition for P1 in terms of mutual coherence. If x is a k
sparse vector and matrix A is k-RIP compliant, k < 1

2

(

1+ 1
µ

)

is an exact recovery condition for P1 problem. The following

result is relevant to the objective of present work.

Lemma 3. (E. Candes et. al. [1]): Let s ≥ 1 be such that

δs + θs,2s < 1, and c be a real vector supported on N ⊆ [n]
obeying |N | ≤ s. Then there exists a vector γ ∈ R

n such that

γ′ai = ci for all i ∈ N where ai is the ith column of a matrix

A ∈ R
m×n. Furthermore, γ obeys

| < γ, ai > | ≤ θs
(1− δs − θs,2s)

√
s
.‖c‖, ∀i /∈ N. (3)

III. COMPRESSED SENSING WITH PARTIAL SUPPORT

CONSTRAINT

It may be noted that the reconstruction method given by

P1 in (2) is nonadaptive as no information about x is used in

P1. It can, however, be made partially adaptive by imposing

constraints on the support of the solution to be obtained. In

[9][5][7] (and the references therein) the authors have modified

the cost function of P1 problem by incorporating the partial

support information into the reconstruction process as detailed

below.

Consider that T is the known partial support information of

signal x. Here T is considered in general sense that it can have

an error part which corresponds to the complement of support

of x. In [9], the authors have modified the P0 problem by

considering zero weights in T and posed it as follows:

min‖xT c‖0 subject to y = Ax. (4)

This problem recovers a signal that satisfies the data constraint

and whose support is sparsest outside T . The following result

in [9] establishes the uniqueness of (4).

Theorem 4. (N. Vasawani et. al. [9]): Given a sparse vector

x with support N = T ∪∆/∆e where ∆ and T are unknown

and known disjoint supports respectively, and ∆e is the error

in known support such that ∆e ⊆ T . Consider reconstructing

it from y = Ax by solving (4). Then x is the unique minimizer

of (4) if δk+2u < 1,where k := |T | and u := |∆|.
In [9], the authors have also considered the convex relaxation

of (4) as

min‖xT c‖1 subject to y = Ax. (5)

The uniqueness condition of (5) has been established by the

following results.

Theorem 5. (N. Vasawani et. al. [9]): Given a sparse vector

x whose support N = T∪∆/∆e where ∆ and T are unknown

and known disjoint supports respectively, and ∆e is the error

in known support such that ∆e ⊆ T . Consider reconstructing

it from y = Ax by solving (5). Then x is the unique minimizer

of (5) if

1) δk+u < 1 and δ2u + δk + θ2k,2u < 1,

2) ρk(2u, u)+ρk(u, u) < 1, with ρk(s, s̃) :=
θs̃,s+

θs̃,kθs,k
1−δk

1−δs−
θ2
s,k

1−δk

,

where s := |N |, k := |T | and u := |∆|.
Corollary 6. (N. Vasawani et. al. [9]): Given a sparse vector,

x, whose support N = T∪∆/∆e where ∆ and T are unknown

and known disjoint supports respectively, and ∆e is the error

in known support such that ∆e ⊆ T . Consider reconstructing

it from y = Ax by solving (5). Then x is the unique minimizer

of (5) if u ≤ k and δk+2u < 1
5 .

Since sparsity of a signal inside T is unconstrained in (4), the

recovered signal may not be sparse in T . In order to recover a

signal, satisfying the data constraint, which is in general sparse

inside T and sparsest outside T , one may choose general

weights w ∈ [0, 1] and propose the general weighted-zero-

norm problem:

(P0,w) min‖x‖0,w subject to y = Ax, (6)

where ‖x‖0,w = w‖xT ‖0 + ‖xT c‖0. It may be noted that

when w = 0, P0,w coincides with (4) and when w = 1,

it coincides with the standard P0 problem (1). As stated in

previous section, the uniqueness results in these two cases are

established by Theorem 4 and Theorem 1 respectively. In [5],

nevertheless, the authors have convexified this problem for a

general weight vector w ∈ [0, 1] and an arbitrary subset T of

[n] the following way:

(P1,w) min‖x‖1,w subject to y = Ax, (7)

where ‖x‖1,w :=
∑

i wi|xi| with wi =

{

w for i ∈ T

1 for i /∈ T
.

In general, in applications, T can be drawn from the

estimate of the support of signal or from its largest coefficients.

It has been shown in [5] that a signal x can be stably and

robustly recovered from P1,w problem in noisy case if at

least 50% of the partial support information is accurate. The

uniqueness result in Theorem 5 holds in a case when w is set to

0 in P1,w. In the case, where w = 1, however, P1,w coincides

with P1. To the best of our knowledge, the uniqueness of

solution of Pp,w, with p = 0, 1, is not known for w ∈ (0, 1).
The present work aims at providing the stated uniqueness in

the cases complementary to the known cases (viz, w = 0, 1).
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IV. UNIQUENESS OF SOLUTION OF WEIGHTED 0-NORM

PROBLEM

Our uniqueness result for weighted 0-norm minimization may

be summarized in the form of following theorem, which is

motivated by the results in [9].

Theorem 7. Let x be a real sparse vector supported on N ⊆
[n] with |N | = s and y = Ax, where A ∈ R

m×n with m < n.

Let T ⊆ [n], with |T | = k and ∆1 = T ∩ N with |∆1| = t
and ∆ = T c ∩N with |∆| = u. If

δk+2u+⌈wt⌉ < 1, (8)

then x is the unique minimizer to the P0,w problem in (6) for

0 ≤ w ≤ 1.

Proof : Let x̃ be a minimizer of (6). Then, ‖x̃‖0,w ≤ ‖x‖0,w,

which implies that ‖x̃T c‖0 ≤ w‖xT ‖0+ ‖xT c‖0−w‖x̃T ‖0 ≤
w‖xT ‖0 + ‖xT c‖0 ≤ wt+ u. Hence, x̃T c has at most wt+ u
number of non-zero elements. Therefore x̃ remains supported

on a subset of T of cardinality at most k and and on a set

∆̃ ⊆ T c of cardinality at most wt + u. Similarly x is also

supported on a subset ∆1 ⊆ T of cardinality t ≤ k and on

a set ∆ ⊆ T c of cardinality at most u. Then the support

of x̃ − x remains contained in the union T ∪ ∆ ∪ ∆̃, which

is of cardinality at most k + u + wt + u = k + 2u + wt.
Now A(x̃ − x) = 0 reduces to AT∪∆∪∆̃(x̃ − x) = 0. As

0 < δk+2u+⌈wt⌉ < 1, AT∪∆∪∆̃ is a full rank matrix, which

implies that x̃ = x.

Remark 1. Here the ceiling operation ⌈wt ⌉ is used to take

the smallest integer greater than or equal to the real number

wt.

Remark 2. When w = 1, the weighted 0-norm problem

coincides with the standard 0-norm problem in (1) and k +
2u+wt = k−t+2(t+u) = 2s+e with e = |T∩N c|. Further, if

T ⊆ N then e = 0. Hence δk+2u+⌈wt⌉ < 1 coincides with the

uniqueness condition δ2s < 1 of the standard 0-norm problem

in (1).

When w = 0, the weighted 0-norm problem coincides with

the 0-norm problem in (4) and the uniqueness condition in (8)

of the weighted 0-norm problem coincides with δk+2u < 1 of

Theorem 4.

V. UNIQUENESS OF SOLUTION OF WEIGHTED 1-NORM

PROBLEM

Our uniqueness result for weighted 1-norm minimization is

established with the help of following lemma:

Lemma 8. Let x ∈ R
n be a real sparse vector supported on

N ⊆ [n] with |N | = s and A ∈ R
m×n with m < n . Let

c ∈ R
n be such that

ci =











w.sgn(xi) for i ∈ T

sgn(xi) for i ∈ ∆

0 otherwise,

where T ⊆ [n] with |T | = k, ∆ = T c ∩N with |∆| = u and

w ∈ [0, 1]. If
(

√

kw2 + u

k + u

)

θk+u + δk+u + θk+u,2(k+u) < 1, (9)

then there exists a vector γ ∈ R
n such that

1) γ′ai = w.sgn(xi) for i ∈ T
2) γ′ai = sgn(xi) for i ∈ ∆
3) |γ′ai| < 1 for i ∈ (T ∪∆)c.

Proof : Since δk+u+θk+u,2(k+u) < 1 follows from (9), Lemma

3 implies that there exists a vector γ ∈ R
n such that γ′ai = ci

for i ∈ T ∪ ∆, that is, γ′ai = w.sgn(xi) for i ∈ T and

γ′ai = sgn(xi) for i ∈ ∆. Again, from (3) and (9), we have

|γ′ai| ≤
θk+u ‖c‖

(1− δk+u − θk+u,2(k+u))
√
k + u)

=
θk+u(

√
kw2 + u)

(1− δk+u − θk+u,2(k+u))
√
k + u

< 1.

The following result summarizes the uniqueness of solution

of weighted 1-norm minimization problem, whose proof is

motivated by the results in [1].

Theorem 9. Let x be a real sparse vector supported on N ⊆
[n] with |N | = s and y = Ax, where A ∈ R

m×n with m < n.

Let T ⊆ [n] with |T | = k and ∆ = T c ∩N with |∆| = u. If

(

√

kw2 + u

k + u

)

θk+u + δk+u + θk+u,2(k+u) < 1, (10)

then x is the unique minimizer to the P1,w problem in (7) for

0 ≤ w ≤ 1.

Proof : By standard convex arguments, there exists one min-

imizer x̃ to the problem (7), which implies that ‖x̃‖1,w ≤
‖x‖1,w. Note that xi = 0 for i ∈ (T ∪N)c ⊆ N c. We have

‖x̃‖1,w =
∑

i∈T

w|x̃i|+
∑

i∈T c

|x̃i|

=
∑

i∈T

w|x̃i|+
∑

i∈∆

|x̃i|+
∑

i∈(T∪∆)c

|x̃i|

=
∑

i∈T

w|xi + x̃i − xi|+
∑

i∈∆

|xi + x̃i − xi|

+
∑

i∈(T∪∆)c

|x̃i − xi|

≥
∑

i∈T

w.sgn(xi)(xi + x̃i − xi)

+
∑

i∈∆

sgn(xi)(xi + x̃i − xi) +
∑

i∈(T∪∆)c

(x̃i − xi)

=
∑

i∈T

w|xi|+
∑

i∈∆

|xi|+
∑

i∈T

w.sgn(xi)(x̃i − xi)

+
∑

i∈∆

sgn(xi)(x̃i − xi) +
∑

i∈(T∪∆)c

(x̃i − xi)

≥ ‖x‖1,w +
∑

i∈T

γ′ai(x̃i − xi) +
∑

i∈∆

γ′ai(x̃i − xi)

+
∑

i∈(T∪∆)c

γ′ai(x̃i − xi)

= ‖x‖1,w + γ′A(x̃ − x) = ‖x‖1,w.
(11)

In the above chain of steps, the vector γ ∈ R
n is supposed to

satisfy the following properties:
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1) γ′ai = w.sgn(xi) for i ∈ T
2) γ′ai = sgn(xi) for i ∈ ∆
3) |γ′ai| < 1 for i ∈ (T ∪∆)c.

In view of (10), the existence of such a vector γ is guaranteed

by Lemma 8. From (11), it follows that ‖x̃‖1,w = ‖x‖1,w.

Consequently, all the inequalities in (11) must be equalities.

But then
∑

i∈(T∪∆)c |x̃i| =
∑

i∈(T∪∆)c(γ
′ai)x̃i implies that

x̃i = 0 on (T ∪∆)c as |γ′ai| < 1 on (T ∪∆)c. Now Ax = Ax̃
reduces to AT∪∆(x − x̃) = 0. By (10), we have δk+u <
1 which implies that x̃i = xi on T ∪ ∆. Thus x̃ = x as

claimed.

Remark 3. When w = 1, the weighted 1-norm problem

coincides with the standard 1-norm problem in (2) and k+u =
t+ u+ k − t = s+ e, where t = |T ∩N | and e = |T ∩N c|.
Further, if T ⊆ N then e = 0. In this case, k+u coincides with

s and the uniqueness condition (10) of Theorem 9 coincides

with the uniqueness condition θs + δs + θs,2s < 1 of the

standard 1-norm problem.

When w = 0, the weighted 1-norm problem coincides

with 1-norm problem (5), and the uniqueness condition gets

reduces to

(

√

u

k + u

)

θk+u + δk+u + θk+u,2(k+u) < 1. (12)

As such, it is not possible to compare the above condition to

the uniqueness condition of Theorem 5. This is because, the

proofs of both adopt different strategies. In order to deduce

a condition from (12) in terms of RIC (that is akin to the

condition in Corollary 6), we use the inequality θs,s̃ ≤ δs+s̃.

Then, θk+u ≤ δ2(k+u) and θk+u,2(k+u) ≤ δ3(k+u). Again if

u ≤ k, then u
k+u

≤ 1
2 . Hence, (12) holds if ( 1√

2
+2)δ3(k+u) <

1, that is, δ3(k+u) <
√
2

1+2
√
2
≈ 0.369.

VI. CONCLUSION

The current work has proposed the conditions that guarantee

the uniqueness of solution of weighted 0-norm and weighted

1-norm minimization problems for w ∈ [0, 1]. It has been

analyzed further that the uniqueness conditions match with

their known counterparts in the particular cases where (i).

w = 0, 1 with 0-norm, (ii). w = 1 with 1-norm. In the case

where w = 0 with 1-norm, however, our RIC-condition does

not exactly match with its corresponding known condition.
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