Skip to main content

ABAC: Anonymous Bilateral Access Control Protocol with Traceability for Fog-Assisted Mobile Crowdsensing

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1454))

Abstract

Fog-assisted mobile crowdsensing (MCS) has been applied to various applications to improve the quality of big data services. As two indispensable services of fog-assisted MCS, privacy protection and flexible access control have attracted widespread attention. Although there are already some cryptographic solutions to address the above concerns, they still have some limitations in the development of mobile crowdsensing, such as lacking anonymous protection and only providing unilateral access control (i.g., who can read). Thus, we propose an anonymous bilateral access control protocol (ABAC) with traceability for secure big data transmission in fog-assisted MCS. By combining the designed access control encryption scheme and an efficient group signature, ABAC not only protects the identity privacy of participants but also achieves access control in terms of reading and writing simultaneously. Security analysis and experimental evaluations demonstrate that ABAC fits the requirements of fog-assisted MCS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. The GNU multiple precision arithmetic library. https://gmplib.org/

  2. The pairing-based cryptography library. https://crypto.stanford.edu/pbc/

  3. Capponi, A., Fiandrino, C., Kantarci, B., Foschini, L., Kliazovich, D., Bouvry, P.: A survey on mobile crowdsensing systems: challenges, solutions, and opportunities. IEEE Commun. Surv. Tutor. 21(3), 2419–2465 (2019). https://doi.org/10.1109/COMST.2019.2914030

    Article  Google Scholar 

  4. Damgård, I., Haagh, H., Orlandi, C.: Access control encryption: enforcing information flow with cryptography. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 547–576. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_21

    Chapter  MATH  Google Scholar 

  5. Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state and future challenges. IEEE Commun. Mag. 49(11), 32–39 (2011). https://doi.org/10.1109/MCOM.2011.6069707

    Article  Google Scholar 

  6. Gisdakis, S., Giannetsos, T., Papadimitratos, P.: Security, privacy, and incentive provision for mobile crowd sensing systems. IEEE Internet Things J. 3(5), 839–853 (2016). https://doi.org/10.1109/JIOT.2016.2560768

    Article  Google Scholar 

  7. Ho, T.H., Yen, L.H., Tseng, C.C.: Simple-yet-efficient construction and revocation of group signatures. Int. J. Found. Comput. Sci. 26(5), 611–624 (2015). https://doi.org/10.1142/S0129054115500343

    Article  MathSciNet  MATH  Google Scholar 

  8. Jin, H., Su, L., Xiao, H., Nahrstedt, K.: Inception: incentivizing privacy-preserving data aggregation for mobile crowd sensing systems. In: Proceedings of ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 341–350 (2016). https://doi.org/10.1145/2942358.2942375

  9. Li, T., Jung, T., Qiu, Z., Li, H., Cao, L., Wang, Y.: Scalable privacy-preserving participant selection for mobile crowdsensing systems: participant grouping and secure group bidding. IEEE Trans. Netw. Sci. Eng. 7(2), 855–868 (2018). https://doi.org/10.1109/TNSE.2018.2791948

    Article  MathSciNet  Google Scholar 

  10. Liu, B., Chen, L., Zhu, X., Zhang, Y., Zhang, C., Qiu, W.: Protecting location privacy in spatial crowdsourcing using encrypted data. In: Proceedings of International Conference on Extending Database Technology (EDBT) (2017). https://doi.org/10.5441/002/edbt.2017.49

  11. Liu, J., Shen, H., Narman, H.S., Chung, W., Lin, Z.: A survey of mobile crowdsensing techniques: a critical component for the internet of things. ACM Trans. Cyber-Physical Syst. 2(3), 1–26 (2018). https://doi.org/10.1145/3185504

    Article  Google Scholar 

  12. Marjanović, M., Grubeša, S., Žarko, I.P.: Air and noise pollution monitoring in the city of Zagreb by using mobile crowdsensing. In: Proceedings of International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pp. 1–5 (2017). https://doi.org/10.23919/SOFTCOM.2017.8115502

  13. Miao, C., et al.: Cloud-enabled privacy-preserving truth discovery in crowd sensing systems. In: Proceedings of ACM Conference on Embedded Networked Sensor Systems (SenSys), pp. 183–196 (2015). https://doi.org/10.1145/2809695.2809719

  14. Miao, C., Su, L., Jiang, W., Li, Y., Tian, M.: A lightweight privacy-preserving truth discovery framework for mobile crowd sensing systems. In: Proceedings of IEEE Conference on Computer Communications (INFOCOM) (2017). https://doi.org/10.1109/INFOCOM.2017.8057114

  15. Ni, J., Zhang, A., Lin, X., Shen, X.S.: Security, privacy, and fairness in fog-based vehicular crowdsensing. IEEE Commun. Mag. 55(6), 146–152 (2017). https://doi.org/10.1109/MCOM.2017.1600679

    Article  Google Scholar 

  16. Ni, J., Zhang, K., Yu, Y., Lin, X., Shen, X.S.: Providing task allocation and secure deduplication for mobile crowdsensing via fog computing. IEEE Trans. Dependable Secure Comput. 17(3), 581–594 (2018). https://doi.org/10.1109/TDSC.2018.2791432

    Article  Google Scholar 

  17. Wang, J., Wang, Y., Zhang, D., Helal, S.: Energy saving techniques in mobile crowd sensing: current state and future opportunities. IEEE Commun. Mag. 56(5), 164–169 (2018). https://doi.org/10.1109/MCOM.2018.1700644

    Article  Google Scholar 

  18. Xiao, M., Wu, J., Zhang, S., Yu, J.: Secret-sharing-based secure user recruitment protocol for mobile crowdsensing. In: Proceedings of IEEE Conference on Computer Communications (INFOCOM) (2017). https://doi.org/10.1109/INFOCOM.2017.8057032

  19. Xu, G., Li, H., Tan, C., Liu, D., Dai, Y., Yang, K.: Achieving efficient and privacy-preserving truth discovery in crowd sensing systems. Comput. Secur. 69, 114–126 (2017). https://doi.org/10.1016/j.cose.2016.11.014

    Article  Google Scholar 

  20. Ye, D., Mei, Y., Shang, Y., Zhu, J., Ouyang, K.: Mobile crowd-sensing context aware based fine-grained access control mode. Multimedia Tools Appl. 75(21), 13977–13993 (2015). https://doi.org/10.1007/s11042-015-2693-3

    Article  Google Scholar 

  21. Zheng, Y., Duan, H., Wang, C.: Learning the truth privately and confidently: encrypted confidence-aware truth discovery in mobile crowdsensing. IEEE Trans. Inf. Forensics Secur. 13(10), 2475–2489 (2018). https://doi.org/10.1109/TIFS.2018.2819134

    Article  Google Scholar 

  22. Zheng, Y., Duan, H., Yuan, X., Wang, C.: Privacy-aware and efficient mobile crowdsensing with truth discovery. IEEE Trans. Dependable Secure Comput. 17(1), 121–133 (2017). https://doi.org/10.1109/TDSC.2017.2753245

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Nos. U20A20176 and 62072062), the Natural Science Foundation of Chongqing, China (No. cstc2019jcyjjqX0026), and the Guangxi Key Laboratory of Trusted Software (No. KX202043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Xiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, B., Wang, Z., Xiang, T., Yang, L., Yan, H., Li, J. (2021). ABAC: Anonymous Bilateral Access Control Protocol with Traceability for Fog-Assisted Mobile Crowdsensing. In: Tan, Y., Shi, Y., Zomaya, A., Yan, H., Cai, J. (eds) Data Mining and Big Data. DMBD 2021. Communications in Computer and Information Science, vol 1454. Springer, Singapore. https://doi.org/10.1007/978-981-16-7502-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7502-7_40

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7501-0

  • Online ISBN: 978-981-16-7502-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics