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Abstract. The anonymity of blockchain has accelerated the growth of illegal
activities and criminal behaviors on cryptocurrency platforms. Although decen-
tralization is one of the typical characteristics of blockchain, we urgently call for
effective regulation to detect these illegal behaviors to ensure the safety and sta-
bility of user transactions. Identity inference, which aims to make a preliminary
inference about account identity, plays a significant role in blockchain security.
As a common tool, graph mining technique can effectively represent the interac-
tive information between accounts and be used for identity inference. However,
existing methods cannot balance scalability and end-to-end architecture, resulting
high computational consumption and weak feature representation. In this paper,
we present a novel approach to analyze user’s behavior from the perspective of
the transaction subgraph, which naturally transforms the identity inference task
into a graph classification pattern and effectively avoids computation in large-
scale graph. Furthermore, we propose a generic end-to-end graph neural net-
work model, named I2BGNN, which can accept subgraph as input and learn a
function mapping the transaction subgraph pattern to account identity, achieving
de-anonymization. Extensive experiments on EOSG and ETHG datasets demon-
strate that the proposed method achieve the state-of-the-art performance in iden-
tity inference.

Keywords: Blockchain · Identity Inference · Graph Classification · Graph Neural
Network.

1 Introduction

As a distributed database technology, blockchain achieves the function of decentraliza-
tion, encryption, and tamper-proof. Benefiting from its anonymity, the past few years
have witnessed the growing prevalence of cryptocurrencies. As of the first quarter of
2021, there are more than 8,700 kinds of cryptocurrencies with a total market cap of
1,721 billion dollars4 5. People only need to create a pseudonymous account (synony-
mous with address in this paper), and they can implement transaction at almost no

4 https://coinmarketcap.com/
5 https://www.feixiaohao.com/
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cost. However, as the volume of transactions surged, the blockchain system of cryp-
tocurrencies has also become a hotbed of illegal and criminal behavior, such as various
scams [1–3] (Ponzi schemes, mining scams, scam wallets, fraudulent exchanges, etc.),
money laundering [4, 5], abusing bot accounts [6] and vulnerability attack [7].

As an open technique, blockchain provides public and tamper-proof transaction
records, which creates the condition for data mining and analysis. Recently, the emer-
gence of related research has helped to analyze the transaction pattern and account
behavior on the blockchain system, and most of them leverage graph modeling meth-
ods. Such as evolution analysis of market via the on-chain transaction graph [8–12],
transaction patterns recognition via graph topology and motifs [13,14], detection of ab-
normal users or transactions via graph embedding or graph neural network [15,16], etc.
Among them, identity inference, which can be regarded as a de-anonymization process,
is particularly important in blockchain data mining. Generally, identity inference aims
to make a preliminary inference about account identity by capturing the characteristics
of the transaction pattern of the accounts. For this task, common researches mainly con-
centrate on manual feature engineering including transaction features [17], graph fea-
tures [18] and external features [14]. These features are mainly intuitive information,
and share the same drawback like weak representation ability for classification. Further,
several methods based on random-walk [19] and graph motif [20] capture higher-order
network features that are more representational. With the development of graph deep
learning, graph convolution network (GCN) has attracted considerable attention and
been applied in identity inference gradually, achieving outstanding results [21, 22].

After reviewing the above various methods, we summarize two conflicting issues:
scalability and end-to-end. On the one hand, real-world transaction data on blockchain
systems are generally extremely huge. Although these methods based on feature engi-
neering, especially manual features, show good scalability because of the independence
of feature extraction, they cannot achieve end-to-end architecture. End-to-end can re-
duce the reliance on expertise which is the core of feature engineering, and optimize
target task in a complete form rather than multi-flows. On the other hand, although the
graph convolution network is commonly achieved via end-to-end, most of them have
poor scalability. Because the training of graph convolution network is usually performed
on the whole transaction graph, where the loading and computing are not realistic.

Motivated by the subgraph perspective [15], we propose a framework to reconcile
the scalability and end-to-end solution for identity inference. Benefiting from previ-
ous work, we collect two kinds of on-chain transaction data including Ethereum and
EOSIO, to infer the “phisher” and “bot” accounts, respectively. Firstly, we extract the
transaction subgraph for each labeled accounts by a sampling mechanism. Through that,
each account is transformed into an independent transaction subgraph. The sampling
mechanism constrains the scale of transaction subgraph, which can effectively reduce
the occupation of resources. Secondly, we propose an end-to-end model, to achieve
Identity Inference on Blockchain using Graph Neural Network (named I2BGNN).

The rest of paper is organized as follows. In Sec. 2, we introduce the related work
about identity inference. In Sec. 3, we describe the details of our framework, including
subgraph extraction and the architecture of I2BGNN. Sec. 4 presents the experiment set-
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tings and the comparison of experimental results with discussion. Finally, we conclude
the paper in Sec. 5.

2 Related Work

Identity inference, which aims to detect abnormal and illegal accounts, has become
an effective means to monitor accounts for platform and measure transaction risks for
users. For identity inference on blockchain, related works concentrate on manual fea-
ture, graph embedding, graph neural network, and the others.

Manual Feature Manual feature is a kind of feature engineering that relies on the ex-
perience of experts relatively. Normally, the more expert experience involved, the more
reliable the feature vectors are. Lin et al. [23] designed various features of transac-
tion timestamps to express the transaction history about the accounts, and constructed a
classifier against abnormal bitcoin addresses. Li et al. [17] considered three kinds of fea-
tures: the basic account feature, the topological feature which is related to transaction
patterns, and temporal feature which is captured from the distributions of transaction
timestamp. In addition to transaction information, Huang et al. [6] also considered the
calling information of smart contract to expand the feature space, and finally realized
the identification of bot accounts in EOSIO.

Graph Embedding Graph embedding aims to learn low-dimensional node represen-
tations that capture the graph structure and drive downstream graph mining task such
as node classification to identify illicit accounts. Up to now, a series of methods based
on DeepWalk (DW) [24] have been used to detect accounts. Yuan et al. [16] used the
Node2Vec algorithm which is a variant of DW to extract the potential features of the
accounts and classified the phishers by Support-Vector-Machine (SVM). Wu et al. [19]
redesigned the walking strategy by using transaction volume, timestamps, and multi-
edges features to make their embedding framework more suitable for this task. Sub-
sequently, Yuan et al. [15] extracted the subgraphs for each target account and em-
bedded their transaction topology into feature vector via an embedding method named
Graph2Vec [25]. Besides, they introduced the line graph [26] to further enhance the
network structure embedding. Chen et al. [27] also used subgraph mechanism and got
the embeddings by a graph convolution layer combining graph auto-encoder in an un-
supervised way, and achieved phisher classification by LightGBM [28].

Graph Neural Network This part mainly about the graph neural networks with end-
to-end architecture. In [22], the whole transaction graph was sliced into small graphs
by timestamp. This operation reduced the computational complexity and memory con-
sumption which alleviate the scalability problem. Subsequently, graph convolution net-
work was used for inductive learning to realize account identity inference. Tam et
al. [21] used the mechanism of sampling transaction neighbors which is similar to
the subgraph extraction. They characterized edges by embedding the temporal features
from the time-series of transactions and incorporating them into the graph convolution
network.
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Others Besides the aforementioned methods, there are other frameworks to achieve
this identity inference. Phetsouvanh [29] proposed a graph mining technology to detect
the suspicious bitcoin flow and account by analyzing the path length and confluence
account of the directed subgraph. Zhang [30] introduced the concept of meta-path from
the heterogeneous network and constructed multi-constrained meta-path based on time,
attribution and topology, which is an effective way to capture behavior pattern features
in a complex network.

3 Method

In this section, we first define the identity inference problem on blockchain, then present
the details of subgraph extraction for constructing graph classification dataset. Finally,
we review the knowledge of using graph neural network (GNN) for learning node and
graph representations, and represent the details of proposed I2BGCN model for identity
inference.

3.1 Problem Definition

From the perspective of graph mining, identity inference can be regarded as a node
classification task. During node classification, the blockchain data will be modeled as
a user network with million nodes, which results in unaffordable time and memory
consumption for most practical algorithms. Inspired by the core of “neighborhood ag-
gregation” in graph neural network, we transform the node classification problem into
a graph classification pattern in return for less time and memory consumption.

Given a set of nA labeled accounts A= {(ai,yi) | i= 1,2, · · · ,nA}, we can extract the
transaction subgraph centered on each target account. Specifically, we extract the trans-
action subgraph of account ai: Gai = (V,Ev,Et ,X ,yi), where V represents the set of
accounts in this subgraph, Ev and Et represent the directed edge sets that contain infor-
mation about transaction volume and transaction frequency respectively, X represents
the calling information of smart contract, yi is the label of subgraph Gai . Note that we
assign the label of account ai to the transaction subgraph centered on it, and transform
the node classification problem into a graph classification task: fnc(ai)⇒ fgc(Gai). The
final goal is to learn the transaction patterns of subgraphs and classify centered account
into phishing or non-phishing via graph neural networks. The workflow of our frame-
work is shown in Fig. 1, and the details of subgraph extraction and classifier design will
be introduced in Subsection 3.2 and 3.3, respectively.

3.2 Subgraph Extraction

For each account ai in A, we check the number of its transaction partners (i.e. neighbor
nodes) first. Here, an upper limit of neighbor size, denoted as nu, will be set to control
the scale of transaction subgraph. If the neighbor size of ai is less than the threshold, all
neighbors and all transactions between them will be extracted. Otherwise, we calculate
and sort the total transaction volume between target account and its neighbors, and
select the top-nu neighbors. We assume that the larger the transaction volume, the higher
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Fig. 1. The schematic depiction of our framework. The complete workflow proceeds as follows: a)
modeling the transaction network; b) sampling the labeled accounts; c) extracting the subgraphs
centered on target accounts; d) training and evaluating using GNNs.

the correlation between the two accounts. The above extraction mechanism can also be
used to sample k-hop transaction neighbors from the (k−1)-hop neighbors. Therefore,
the scale of one-order / two-order subgraph of target account will not exceed nu / (nu)

2

normally.
The above process constructs the account (node) sets V , the transaction (edge) vol-

ume set Ev and the transaction (edge) frequency set Et . Next, we briefly introduce two
datasets which are named ETHG and EOSG and construct feature matrix X for them.

– ETHG It is from Xblock6 which is a blockchain data platform for academic re-
search. There is an account list that contains 1660 phisher accounts and 1700 non-
phisher accounts with their 2-hop transaction records in Ethereum. Based on this,
we filter the Contract-Account (CA) which will be considered as the contract call-
ing feature of Externally-Owned-Accounts (EOA). And according to the span of
the block where the transaction record is located, we collect all CAs from 0 to
10,000,000 blocks, filter them via the calling amount, and retain the top 14885
finally. After that, we construct the feature matrix of contract calling (cc) Xcc ∈
Rn×14885, and each EOA has a 14885 dimension vector to represent their calling
situation about those CAs.

– EOSG It is collected by [6]. They integrate and model the on-chain data of EO-
SIO: Enhanced Money Flow Graph (EMFG) which contains the transactions be-
tween accounts including timestamps and volume, Enhanced Account Creation
Graph (EACG) which contains account creation tree data, Enhanced Contract In-
vocation Graph (ECIG) which contains smart contract calling data, and a list of
labeled accounts which contains 229,907 normal accounts and 63863 bot-like ac-
counts. Similarly, we extract the subgraph graph and contract calling features from
EMFG and ECIG respectively, and construct the feature matrix of contract calling

6 http://xblock.pro/
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(cc) Xcc ∈Rn×1213. Further, we consider the account name restriction mechanism of
EOSIO and add three kinds of node labels to expand features, since that the type of
neighbors can also express the transaction pattern of the account. The three labels
are the general account which consists of 12 characters, the auction account which
is less than 12 characters but does not contain the character ’.’, and the sub-account
of auction account which combines ’.’ with auction account name as the suffix. On
the other hand, the neighbor extraction will stop at the system account whose name
begins with ’EOSIO.’. Because the behavior pattern of the current center account
has nothing to do with the transactions between other further accounts and system
accounts. We construct the feature matrix of node label (nl) Xnl ∈ Rn×3.

In summary, the feature matrix is X = Xcc ∈ Rn×14885 for ETHG and X = Xcc⊕Xnl ∈
Rn×1216 for EOSG where ⊕ is concatenation operation.

3.3 Graph Neural Networks

By viewing the accounts interaction as graph data (i.e., transaction graph), recent deep
learning methods for graph structural data, such as graph neural network (GNNs) [31–
33], can be utilized to learn transaction pattern representation that can be fed to down-
stream machine learning models for phishing account detection. In this section, we will
present the details of employing GNNs to obtain transaction pattern representation.

GNNs learn the representations of nodes by leveraging both the graph structure and
node/edge features. This is done by a neighborhood aggregation function that iteratively
takes the representation of all neighbors together with the graph structure as input, and
outputs the aggregate representation of target node. The aggregation function can be
defined using Graph Convolution layer [31], Graph Attention layer [32], or any gen-
eral message passing layer [33]. Formally, a graph convolution network (GCN) model
follows the following rule to aggregate the feature of neighbors:

H(l) = σ(ÂH(l−1)W (l−1)), (1)

where H(l−1) ∈Rn×k is a matrix containing the k-dimensional representation of n nodes
in the (l− 1)-th layer, σ is the activation function (typically ReLU), Â is a symmetric
normalization of A and can be defined as:

Â = D̃−
1
2 ÃD̃−

1
2 , Ã = A+ In, D̃ = diag(

n

∑
j=0

Ãi j), (2)

where Ã is an n× n adjacency matrix of the graph with self connections added, D̃ is a
degree diagonal matrix. After l layer of computation, the node representations H(l) is
able to capture the information within their l-hop neighborhoods.

Generally, GCN model is used to learn the node representations in semi-supervised
node classification. A 2-layer GCN model with softmax function can be formulated as:

Z = softmax(Â ·ReLU(ÂXW (0))W (1)) (3)

where Z ∈Rn×y is the prediction probability distribution and y is the dimension of node
labels. W (0) and W (1) are the input-to-hidden and hidden-to-output weights, respec-
tively.
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Fig. 2. The architecture of I2BGNN model. a) Av (At ) and X are captured from subgraph extrac-
tion and sent to graph convolution network; b) the max-pooling layer is used to compress the
aggregated node representations to obtain the whole graph representation; c) the graph represen-
tation is used to predict the subgraph (account) label.

3.4 I2BGNN

We now present the details of proposed I2BGNN for identity inference on blockchain.
For graph classification, the pooling operations aggregate node representations from the
final iteration to obtain the whole graph’s representation. By stacking the pooling layer
and fully-connected layer after 2-layer GCN, the basic graph classification model for
identity inference can be constructed as follows:

Z = softmax(MaxPooling(ReLU(Â ·ReLU(ÂXW (0))W (1)))W (2)+b) (4)

Note that we use the max pooling to obtain the whole graph’s representation. The model
architecture of I2BGNN is shown in Fig. 2. In a transaction subgraph, each node rep-
resents an account and each directed edge represents transaction flow that contains in-
formation about transaction volume and frequency. For the input layer of GCN, we
first initialize the node representations using their attributions in transaction subgraph.
Specifically, the node attributions include contract calling information (cc) and distinc-
tive node-label (nl), as mentioned in Sec. 3.2, and we initialize node representation as
H(0) = X .

4 Experiment

4.1 Dataset

For EOSG dataset, we filter the labeled account list in term of subgraph size and obtain
over 20,000 available accounts. Then, 1000 accounts per label are selected randomly for
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Table 1. Dataset properties. |G| is the number of subgraphs in dataset, Avg.|V | is the average
number of nodes per graph, Avg.|Edi| is the average number of edges per directed graph, Avg.|Eud|
is the average number of edges per undirected graph which is transformed from corresponding
directed graph, |F | is the dimension of node features, |Y | is the number of classes for labels.

Dataset |G| Avg.|V | Avg.|Edi| Avg.|Eud| |F | |Y | Label bias
ETHG 3266 80 239 222 14885 2 0.99
EOSG 2000 260 4250 3212 1216 2 1

the follow-up experiments. The detailed dataset properties are given in Table 1. Finally,
each dataset is split into training and testing sets with a proportion of 1:1, and they will
be resplit 3 times using different random seeds. We report the average accuracy across
all trials.

4.2 Baseline

Since we implement identity inference with a graph classification pattern, we compare
our framework with several SOTA graph classification algorithms including SF [34],
Graph2vec [25], Netlsd [35] and FGSD [36]. The first two are graph embedding meth-
ods and the last two are graph kernel methods. Graph2vec extends the document embed-
ding methods to graph classification and learns a distributed representation of the whole
graph via document embedding neural networks. SF performs graph classification by
spectral decomposition of the graph Laplacian, i.e., it relies on spectral features of the
graph. Netlsd performs graph classification by extracting compact graph signatures that
inherit the formal properties of the Laplacian spectrum. FGSD calculates the Moore-
Penrose spectrum of the normalized laplacian and uses the histogram of the spectral
features of this spectrum to represent the whole graph.

4.3 Experiment setting

During subgraph extraction, the direction of edges in subgraph is determined by the
transaction flow. However, during the experiments, we find that symmetric adjacency
matrix of subgraph usually outperforms directed adjacency matrix. Therefore, we trans-
form the directed adjacency matrix into a symmetric adjacency matrix by adding its
transpose to itself. Other settings for models and datasets are as follows:

Method settings For all the four baseline methods, we set the embedding dimension
to 128, and use default settings for other parameters. Further, we implement graph clas-
sification by using the following machine learning classifiers: Support Vector Machine
(SVM) with radial basis kernel, k-Nearest Neighbors classifier (KNN) and Random
Forest classifier (RF). As for I2BGNN, we apply two layers of GCNs with output di-
mensions both equal to 128, and set the maximum number of eopchs to be 50, the batch
size to be 30 and dropout to be 0.3.
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Table 2. Results of identity inference. The top-2 best results are highlighted in bold.

Method

Dataset

EOSG ETHG

F1 Precision Recall F1 Precision Recall

Graph2vec

SVM 0.8223 0.8132 0.8317 0.6487 0.7564 0.5678

KNN 0.6171 0.9820 0.4499 0.5705 0.5709 0.5701

RF 0.7637 0.8155 0.7180 0.6104 0.7355 0.5216

SF

SVM 0.9428 0.9222 0.9643 0.6287 0.6405 0.6173

KNN 0.9089 0.9081 0.9098 0.6238 0.6401 0.6083

RF 0.9333 0.9166 0.9507 0.6908 0.7056 0.6766

Netlsd

SVM 0.8730 0.8574 0.8891 0.7067 0.6869 0.7276

KNN 0.8406 0.8417 0.8396 0.6774 0.6884 0.6667

RF 0.8845 0.8625 0.9077 0.6702 0.6782 0.6623

FGSD

SVM 0.9617 0.9534 0.9701 0.7206 0.6810 0.7650

KNN 0.9469 0.9404 0.9534 0.7161 0.6750 0.7625

RF 0.9578 0.9579 0.9578 0.7372 0.7448 0.7297

I2BGNN-v 0.9940 0.9894 0.9986 0.8587 0.8190 0.9024
I2BGNN-t 0.9950 0.9917 0.9983 0.8600 0.8697 0.8505

Metric settings Both the datasets have two classes, so we evaluate the results of binary
classification by precision, recall and F1-Score.

4.4 Result and discussion

Inference Performance Table 2 reports the performance comparison between I2BGNN
and baselines, from which we can observe that I2BGNN significantly outperforms other
methods across the two datasets. Specifically, compared with baselines, our I2BGNN
achieves average improvement of 12% / 19% in term of F1 on EOSG / ETHG. This
may be due to the excellent expression ability of the graph convolution layer and the
effectiveness of the features which are constructed by the contract calling information.
In addition, these graph embedding and kernel methods which are based on spectral
analysis are significantly better than Graph2vec. Their advantages are also reflected in
the efficiency of model operation in experiments.

Furthermore, we investigate the influence of neighborhood depth and data division
on the experimental results under various settings.

The influence of neighborhood depth Normally, the subgraph containing 3-hop neigh-
bors will have a large scale, which leads to difficulties in feature learning. To further
analyze the influence of different depth for subgraph extraction, we extract 1-hop and
2-hop neighbors to construct the subgraphs for each target account. Table 3 shows the
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properties of 1-order and 2-order subgraphs for two datasets. And Table 4 reports the
performance comparison between 1-order and 2-order subgraphs using I2BGNN. For
EOSG, I2BGNN with 1-order subgraph performs slightly better than that with 2-order
subgraph. Actually, the 1-order transaction subgraph contains sufficient and effective
characteristics of transaction behavior, while the larger scale of the 2-order subgraph
leads to the redundancy of information. As for ETHG, the situation is just the opposite,
I2BGNN with 2-order subgraph outperforms that with 1-order subgraph. Obviously,
the 1-order subgraph contains sparse transaction information, which is not conducive
to inference, while the denser interactions in the 2-order subgraph facilitate behavior
analysis and identity inference.

Table 3. The properties of 1-hop and 2-hop subgraphs.

Dataset Subgraph Avg.|V | Avg.|Edi| Avg.|Eud|

EOSG
1-order 17 65 48
2-order 260 4250 3212

ETHG
1-order 10 13 12
2-order 80 239 222

Table 4. Results of I2BGNN with different neighborhood depth.

Dataset Method 1-order 2-order

EOSG
I2BGNN-v 0.9960 0.9940
I2BGNN-t 0.9980 0.9950

ETHG
I2BGNN-v 0.8356 0.8587
I2BGNN-t 0.8366 0.8600

The influence of data split Next, we analyze the sensitivity of models to differ-
ent ratios of data split. Specifically, we vary the ratio of training set to testing set in
{1:9, 1:7, 1:5, 1:3, 1:1, 3:1}. Fig. 3 reports the inference results (F1) of different mod-
els with various proportion of training set. Obviously, for different ratios, our I2BGNN
holds the best performance compared with other graph classification models. In addi-
tion, with the increase of training data, the performances of all models are naturally
improved.

5 Conclusion

Traditional graph mining methods for identity inference are stuck in a dilemma where
it is difficult to integrate scalability and end-to-end architecture into one model. In this
work, we balance scalability and end-to-end architecture in model design. Specifically,
we propose to learn the transaction subgraph centered on target account and trans-
form the identity inference task on blockchain into graph classification pattern, result-
ing in a great reduction in resource consumption. Moreover, we design an end-to-end
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1:9 1:7 1:5 1:3 1:1 3:1

I2BGNN v

I2BGNN t

G2v-KNN

G2v-RF

G2v-SVM

SF-KNN

SF-RF

SF-SVM

FGSD-KNN

FGSD-RF

FGSD-SVM

Netlsd-KNN

Netlsd-RF

Netlsd-SVM

0.985 0.983 0.987 0.990 0.994 0.996

0.984 0.987 0.985 0.992 0.995 0.992

0.299 0.318 0.393 0.475 0.617 0.681

0.721 0.724 0.733 0.739 0.763 0.774

0.752 0.759 0.766 0.782 0.822 0.847

0.812 0.825 0.834 0.869 0.909 0.934

0.879 0.888 0.897 0.911 0.933 0.942

0.874 0.892 0.898 0.922 0.943 0.961

0.884 0.896 0.906 0.926 0.947 0.949

0.910 0.917 0.930 0.943 0.958 0.963

0.892 0.907 0.915 0.938 0.962 0.963

0.792 0.793 0.802 0.811 0.840 0.862

0.830 0.838 0.849 0.864 0.884 0.901

0.798 0.810 0.817 0.836 0.873 0.888

EOSG

1:9 1:7 1:5 1:3 1:1 3:1

I2BGNN v

I2BGNN t

G2v-KNN

G2v-RF

G2v-SVM

SF-KNN

SF-RF

SF-SVM

FGSD-KNN

FGSD-RF

FGSD-SVM

Netlsd-KNN

Netlsd-RF

Netlsd-SVM

0.797 0.821 0.826 0.835 0.849 0.857

0.795 0.821 0.811 0.840 0.860 0.864

0.562 0.558 0.566 0.555 0.570 0.582

0.571 0.579 0.582 0.592 0.610 0.614

0.532 0.552 0.567 0.597 0.649 0.676

0.570 0.584 0.603 0.599 0.623 0.625

0.635 0.642 0.651 0.664 0.690 0.698

0.580 0.592 0.589 0.607 0.628 0.635

0.666 0.667 0.664 0.700 0.716 0.710

0.676 0.687 0.695 0.711 0.737 0.741

0.668 0.683 0.693 0.690 0.720 0.717

0.648 0.653 0.663 0.668 0.677 0.683

0.640 0.645 0.650 0.659 0.670 0.680

0.681 0.680 0.683 0.702 0.707 0.710

ETHG

0.4 0.6 0.8 0.6 0.7 0.8

Fig. 3. Experimental results of different division ratios of the dataset on EOSG(left) and
ETHG(right)

I2BGNN model, which is capable of learning an effective graph representation. Finally,
we conduct extensive experiments on two real blockchain datasets (EOSG and ETHG)
to demonstrate the effectiveness of our proposed I2BGNN. Experimental results show
that the transaction pattern hidden in subgraph can actually reveal the account behavior,
and our I2BGNN achieves the outstanding performance in identity inference.
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empirical analysis of the bitcoin transaction network. PloS one, 9(2):e86197, 2014.

9. Israa Alqassem, Iyad Rahwan, and Davor Svetinovic. The anti-social system properties: Bit-
coin network data analysis. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
50(1):21–31, 2018.

10. Paolo Tasca, Adam Hayes, and Shaowen Liu. The evolution of the bitcoin economy: ex-
tracting and analyzing the network of payment relationships. The Journal of Risk Finance,
2018.

11. Qianlan Bai, Chao Zhang, Yuedong Xu, Xiaowei Chen, and Xin Wang. Evolution of
ethereum: a temporal graph perspective. arXiv preprint arXiv:2001.05251, 2020.

12. Stefano Ferretti and Gabriele D’Angelo. On the ethereum blockchain structure: A com-
plex networks theory perspective. Concurrency and Computation: Practice and Experience,
32(12):e5493, 2020.

13. Butian Huang, Zhenguang Liu, Jianhai Chen, Anan Liu, Qi Liu, and Qinming He. Be-
havior pattern clustering in blockchain networks. Multimedia Tools and Applications,
76(19):20099–20110, 2017.

14. Stephen Ranshous, Cliff A Joslyn, Sean Kreyling, Kathleen Nowak, Nagiza F Samatova,
Curtis L West, and Samuel Winters. Exchange pattern mining in the bitcoin transaction
directed hypergraph. In International Conference on Financial Cryptography and Data Se-
curity, pages 248–263. Springer, 2017.

15. Zihao Yuan, Qi Yuan, and Jiajing Wu. Phishing detection on ethereum via learning represen-
tation of transaction subgraphs. In International Conference on Blockchain and Trustworthy
Systems, pages 178–191. Springer, 2020.

16. Qi Yuan, Baoying Huang, Jie Zhang, Jiajing Wu, Haonan Zhang, and Xi Zhang. Detect-
ing phishing scams on ethereum based on transaction records. In 2020 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–5. IEEE, 2020.

17. Yang Li, Yue Cai, Hao Tian, Gengsheng Xue, and Zibin Zheng. Identifying illicit addresses
in bitcoin network. In International Conference on Blockchain and Trustworthy Systems,
pages 99–111. Springer, 2020.

18. Thai Pham and Steven Lee. Anomaly detection in the bitcoin system-a network perspective.
arXiv preprint arXiv:1611.03942, 2016.

19. Jiajing Wu, Qi Yuan, Dan Lin, Wei You, Weili Chen, Chuan Chen, and Zibin Zheng. Who
are the phishers? phishing scam detection on ethereum via network embedding. IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, 2020.



Identity Inference on Blockchain using Graph Neural Network 13

20. Jiajing Wu, Jieli Liu, Weili Chen, Huawei Huang, Zibin Zheng, and Yan Zhang. Detecting
mixing services via mining bitcoin transaction network with hybrid motifs. IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems, 2021.

21. Da Sun Handason Tam, Wing Cheong Lau, Bin Hu, Qiu Fang Ying, Dah Ming Chiu, and
Hong Liu. Identifying illicit accounts in large scale e-payment networks–a graph represen-
tation learning approach. arXiv preprint arXiv:1906.05546, 2019.

22. Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio Bellei, Tom
Robinson, and Charles E Leiserson. Anti-money laundering in bitcoin: Experimenting with
graph convolutional networks for financial forensics. arXiv preprint arXiv:1908.02591,
2019.

23. Yu-Jing Lin, Po-Wei Wu, Cheng-Han Hsu, I-Ping Tu, and Shih-wei Liao. An evaluation
of bitcoin address classification based on transaction history summarization. In 2019 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC), pages 302–310. IEEE,
2019.

24. Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social rep-
resentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 701–710, 2014.

25. Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang
Liu, and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. arXiv
preprint arXiv:1707.05005, 2017.

26. Qi Xuan, Jinhuan Wang, Minghao Zhao, Junkun Yuan, Chenbo Fu, Zhongyuan Ruan, and
Guanrong Chen. Subgraph networks with application to structural feature space expansion.
IEEE Transactions on Knowledge and Data Engineering, 2019.

27. Liang Chen, Jiaying Peng, Yang Liu, Jintang Li, Fenfang Xie, and Zibin Zheng. Phishing
scams detection in ethereum transaction network. ACM Transactions on Internet Technology
(TOIT), 21(1):1–16, 2020.

28. Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye,
and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in
neural information processing systems, 30:3146–3154, 2017.

29. Silivanxay Phetsouvanh, Frédérique Oggier, and Anwitaman Datta. Egret: Extortion graph
exploration techniques in the bitcoin network. In 2018 IEEE International conference on
data mining workshops (ICDMW), pages 244–251. IEEE, 2018.

30. Rui Zhang, Guifa Zhang, Lan Liu, Chen Wang, and Shaohua Wan. Anomaly detection in
bitcoin information networks with multi-constrained meta path. Journal of Systems Archi-
tecture, 110:101829, 2020.

31. Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

32. Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
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