Skip to main content

Entropy-Based Discretization Approach on Metagenomic Data for Disease Prediction

  • Conference paper
  • First Online:
Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications (FDSE 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1500))

Included in the following conference series:

  • 1158 Accesses

Abstract

Metagenomics analysis has increased its importance in medicine with numerous recent research to investigate and explore the association of metagenomic data to human disease. Discretization approaches are proven as efficient tools to improve the disease prediction performance on metagenomic data. This study proposes a technique based on Entropy and combining some scaler algorithms to conduct bins for discretizing metagenomic data to perform disease classification tasks. Our disease prediction results on six bacterial species abundance metagenomic datasets with the discretization method based on Entropy have revealed promising results compared to the Equal Width Binning with AUCs of 0.955, 0.826, 0.893, 0.692, 0.798, 0.765 classified by a One-dimensional Convolutional Neural Network on data including samples related to Liver Cirrhosis, Colorectal Cancer, Inflammatory Bowel Disease (IBD), and two datasets of Type 2 Diabetes (namely, T2D, and WT2D), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vicente, A.M., Ballensiefen, W., Jönsson, J.I.: How personalised medicine will transform healthcare by 2030: the ICPerMed vision. J. Transl. Med. 18(1) (2020). https://doi.org/10.1186%2Fs12967-020-02316-w

  2. Pemovska, T., et al.: Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. Cancer Discov. 3(12), 1416–1429 (2013). https://doi.org/10.1158%2F2159-8290.cd-13-0350

  3. Sebri, V., Savioni, L.: An introduction to personalized eHealth. In: Pravettoni, G., Triberti, S. (eds.) P5 eHealth: An Agenda for the Health Technologies of the Future, pp. 53–70. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-27994-3_4

    Chapter  Google Scholar 

  4. Petrosino, J.F.: The microbiome in precision medicine: the way forward. Genome Med. 10(1) (February 2018). https://doi.org/10.1186%2Fs13073-018-0525-6

  5. Gilbert, J.A., et al.: Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535(7610), 94–103 (2016). https://doi.org/10.1038%2Fnature18850

  6. Chen, H., Awasthi, S.K., Liu, T., Zhang, Z., Awasthi, M.K.: An assessment of the functional enzymes and corresponding genes in chicken manure and wheat straw composted with addition of clay via meta-genomic analysis. Indus. Crops Prod. 153, 112573 (2020). https://doi.org/10.1016%2Fj.indcrop.2020.112573

  7. Guerron, A.D., Perez, J.E., Risoli, T., Lee, H.J., Portenier, D., Corsino, L.: Performance and improvement of the DiaRem score in diabetes remission prediction: a study with diverse procedure types. Surg. Obes. Relat. Dis. 16(10), 1531–1542 (2020). https://doi.org/10.1016%2Fj.soard.2020.05.010

  8. Tran, T.B., Phan, N.Y.K., Nguyen, H.T.: Feature selection based on a shallow convolutional neural network and saliency maps on metagenomic data. In: Kim, H., Kim, K.J., Park, S. (eds.) Information Science and Applications. LNEE, vol. 739, pp. 107–116. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-6385-4_10

    Chapter  Google Scholar 

  9. Lin, Y., Wang, G., Yu, J., Sung, J.J.Y.: Artificial intelligence and metagenomics in intestinal diseases. J. Gastroenterol. Hepatol. 36(4), 841–847 (2021), https://doi.org/10.1111/jgh.15501

  10. Ren, J., et al.: Identifying viruses from metagenomic data using deep learning. Quant. Biol. 8(1), 64–77 (2020). https://doi.org/10.1007/s40484-019-0187-4

    Article  Google Scholar 

  11. Nguyen, H.T., Tran, T.B., Luong, H.H., Huynh, T.K.N.: Decoders configurations based on unet family and feature pyramid network for COVID-19 segmentation on CT images. PeerJ Comput. Sci. 7,(2021). https://doi.org/10.7717/peerj-cs.719

  12. Li, L., Delwart, E.: From orphan virus to pathogen: the path to the clinical lab. Curr. Opin. Virol. 1(4), 282–288 (2011). https://doi.org/10.1016/j.coviro.2011.07.006

    Article  Google Scholar 

  13. Reiman, D., Metwally, A.A., Sun, J., Dai, Y.: Popphy-cnn: a phylogenetic tree embedded architecture for convolutional neural networks to predict host phenotype from metagenomic data. IEEE J. Biomed. Health Inf. 24(10), 2993–3001 (2020)

    Article  Google Scholar 

  14. LaPierre, N., Ju, C.J.T., Zhou, G., Wang, W.: MetaPheno: a critical evaluation of deep learning and machine learning in metagenome-based disease prediction. Methods 166, 74–82 (2019). https://doi.org/10.1016%2Fj.ymeth.2019.03.003

  15. Auslander, N., Gussow, A.B., Benler, S., Wolf, Y.I., Koonin, E.V.: Seeker: alignment-free identification of bacteriophage genomes by deep learning (April 2020). https://doi.org/10.1101/2020.04.04.025783

  16. Oh, M., Zhang, L.: DeepMicro: deep representation learning for disease prediction based on microbiome data. Sci. Rep. 10(1) (Apr 2020). https://doi.org/10.1038%2Fs41598-020-63159-5

  17. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR abs/1412.6980 (2015)

    Google Scholar 

  18. Pasolli, E., Truong, D.T., Malik, F., Waldron, L., Segata, N.: Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLOS Comput. Biol. 12(7), e1004977 (2016). https://doi.org/10.1371%2Fjournal.pcbi.1004977

  19. Nguyen, T.H., Zucker, J.D.: Enhancing metagenome-based disease prediction by unsupervised binning approaches. In: 2019 11th International Conference on Knowledge and Systems Engineering (KSE), IEEE (October 2019). https://doi.org/10.1109%2Fkse.2019.8919295

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Thanh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Phan, N.Y.K., Tran, T.B., Nguyen, H.H., Nguyen, H.T. (2021). Entropy-Based Discretization Approach on Metagenomic Data for Disease Prediction. In: Dang, T.K., Küng, J., Chung, T.M., Takizawa, M. (eds) Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications. FDSE 2021. Communications in Computer and Information Science, vol 1500. Springer, Singapore. https://doi.org/10.1007/978-981-16-8062-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8062-5_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8061-8

  • Online ISBN: 978-981-16-8062-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics