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Fig. 1 Machine learning combines three main components: data, model and loss. Machine learning
methods implement the scientific principle of “trial and error”. These methods continuously validate
and refine a model based on the loss incurred by its predictions about a phenomenon that generates
data.



Preface

Machine learning (ML) influences our daily lives in several aspects. We routinely ask
ML empowered smartphones to suggest lovely restaurants or to guide us through a
strange place. ML methods have also become standard tools in many fields of science
and engineering. ML applications transform human lives at unprecedented pace and
scale.

This book portrays ML as the combination of three basic components: data, model
and loss. ML methods combine these three components within computationally effi-
cient implementations of the basic scientific principle “trial and error”. This prin-
ciple consists of the continuous adaptation of a hypothesis about a phenomenon that
generates data.

ML methods use a hypothesis map to compute predictions of a quantity of interest
(or higher level fact) that is referred to as the label of a data point. A hypothesis map
reads in low level properties (referred to as features) of a data point and delivers the
prediction for the label of that data point. ML methods choose or learn a hypothesis
map from a (typically very) large set of candidate maps. We refer to this set as of
candidate maps as the hypospace or model underlying an ML method.

The adaptation or improvement of the hypothesis is based on the discrepancy
between predictions and observed data. ML methods use a loss function to quantify
this discrepancy.

A plethora of different ML methods is obtained by combining different design
choices for the data representation, model and loss. ML methods also differ vastly in
their practical implementations which might obscure their unifying basic principles.

Deep learning methods use cloud computing frameworks to train large models
on large datasets. Operating on a much finer granularity for data and computation,
linear (least squares) regression can be implemented on small embedded systems.
Nevertheless, deep learning methods and linear regression use the same principle of
iteratively updating a model based on the discrepancy between model predictions
and actual observed data.

We believe that thinking about ML as combinations of three components given by
data, model and lossfunc helps to navigate the steadily growing offer for ready-to-use

vii



viii Preface

ML methods. Our three-component picture allows a unified treatment of ML tech-
niques, such as early stopping, privacy-preserving ML and xml, that seem quite
unrelated at first sight. For example, the regularization effect of the early stop-
ping technique in gradient-based methods is due to the shrinking of the effective
hypospace. Privacy-preserving ML methods can be obtained by particular choices
for the features used to characterize data points (see Sect. 9.5). Explainable ML
methods can be obtained by particular choices for the hypospace and lossfunc (see
Chap. 10).

To make good use of ML tools it is instrumental to understand its underlying
principles at the appropriate level of detail. It is typically not necessary to understand
the mathematical details of advanced optimization methods to successfully apply
deep learning methods. On a lower level, this tutorial helps ML engineers choose
suitable methods for the application at hand. The book also offers a higher level view
on the implementation of ML methods which is typically required to manage a team
of ML engineers and data scientists.

Espoo, Finland Alexander Jung
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Symbols

Sets

a := b This statement defines a to be shorthand for b.
N The set of natural numbers 1, 2, ....

R The set of real numbers x [2].

R, The set of non-negative real numbers x > 0.

{0, 1}  The set consisting of two real number O and 1.
[0, 1] The closed interval of real numbers x with 0 < x < 1.

Matrices and Vectors

R”
T
X =(X1,...,%)

1l

The identity matrix having diagonal entries equal to one and
every off diagonal entry equal to zero.

The set of vectors that consist of n real-valued entries.

A vector of length n. The jth entry of the vector is denoted as
Xj-

The Euclidean (or “¢,”) norm of the vector X = (x1, . .., X,)"

. ] 2
given as [|x|l, := /> }_ x5

Some norm of the vector x [1]. Unless specified otherwise, we
mean the Euclidean norm ||x||,.

The transpose of a vector x that is considered as a single column
matrix. The transpose can be interpreted as a single-row matrix
()Cl, .. .,xn).

The transpose of a matrix A. A square matrix is called
symmetric if A = AT

The set of all (psd) n x n matrices.
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Symbols

Machine Learning

x®
X

y .

y(l)

(X(i), y(i))
h(-)

Xj

L((x, ), h)

E,
L(h|D)

E;

2;(Q)

fe)

A generic index i = 1,2,..., used to enumerate the data points
within a dataset.

The number of data points in (the size of) a dataset.

The number of individual features used to characterize a data point.
The jth individual feature of a data point.

The feature vector X = (xi, ..., x,)" of a data point whose entries
are the individual features of the data point.

Beside the symbol x, we sometimes use as another symbol to denote a
vector whose entries are features of a data point. We need two different
symbols to denote feature vectors for the discussion feature learning
methods in Chap. 9.

The feature vector of the ith data point within a dataset.

The jth feature of the ith data point within a dataset.

The label (quantity of interest) of a data point.

The label of the ith data point.

The features and the label of the ith data point within a dataset.

A hypothesis map that reads in the features x of a data point and
outputs the predicted label ¥ = A(x).

The j-th feature of a data point. The first feature of a given data point
is denoted as x;, the second feature x, and so on.

The loss incurred by predicting the label y of a data point with feature
vector X using the value = h(x) obtained from evaluating the
hypothesis & € H at the feature vector x.

The validation error of a hypothesis, which is the average loss
computed on a validation set.

The emprisk or average loss incurred by the predictions of hypothesis
h for the data points in the dataset D.

The trainer of a hypothesis /2, which is the average loss incurred by &
on labeled data points that form a training set.

A discrete-time index t = 0, 1, ... used to enumerate a sequence to
temporal events (time instants).

A generic index used to enumerate a finite set of learning tasks within
a multi-task learning problem (see Sect. 7.6).

A regularization parameter that is used to scale the regularization
term that is added to the empirical risk in structural risk minimization
(SRM).

The jth eigenvalue (sorted either ascending or descending) of a psd
matrix Q. We also use the shorthand A ; if the corresponding matrix
is clear from context.

The activation function used by an artificial neuron within an artificial
neural network (ANN).
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