
FPFlow: Detect and Prevent Browser
Fingerprinting with Dynamic Taint

Analysis

Tianyi Li1, Xiaofeng Zheng2, Kaiwen Shen2, and Xinhui Han1(B)

1 Peking University, Beijing, China
{litianyi,hanxinhui}@pku.edu.cn

2 Tsinghua University, Beijing, China
{zxf19,skw17}@mails.tsinghua.edu.cn

Abstract. Browser fingerprinting is a practical user tracking technol-
ogy widely adopted by many real-world websites to potentially track
users’ browsing behaviors. By collecting information such as screen res-
olution, user agent, and WebGL rendered data, the tracker can generate
a unique identifier for users without their knowledge, leading to a severe
violation of user privacy. Therefore, an effective detection and defense
technology for browser fingerprinting is needed to protect user privacy.
In this paper, we proposed FPFlow, a dynamic JavaScript taint anal-
ysis framework to detect and prevent browser fingerprinting. FPFlow
monitors the whole process of browser fingerprinting, including collect-
ing information, generating fingerprinting, and sending it to the remote
server. We evaluated FPFlow on TRANCO top 10,000 websites. Our
experiments showed that our framework could effectively detect browser
fingerprints. We found 66.6% of the websites performing fingerprinting
and revealed how browser fingerprinting is applied in real-world websites.
We also showed that FPFlow could prevent browser fingerprinting with
an acceptable overhead.

Keywords: Browser fingerprinting · Taint analysis ·
Privacy-enhancing technology

1 Introduction

Browser fingerprinting [21] is an online user tracking technique that collects a
vector of browser-specific information, such as user agent, screen resolution, and
installed browser fonts, etc., to uniquely identify the target browser. Previous
studies [15,22] showed that the uniqueness of browser fingerprint could be as high
as 89.4%. When combining hardware features by performing rendering tasks with
HTML Canvas API and WebGL, browser fingerprint can even track users across
browsers. Cao et al. [12] showed that they could uniquely identify more than
99% of 1,903 devices with 31 WebGL rendering tasks.

c© The Author(s) 2022
W. Lu et al. (Eds.): CNCERT 2021, CCIS 1506, pp. 51–67, 2022.
https://doi.org/10.1007/978-981-16-9229-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-9229-1_4&domain=pdf
https://doi.org/10.1007/978-981-16-9229-1_4


52 T. Li et al.

Browser fingerprinting is widely used in several scenarios, such as personal-
ized content and targeted advertising. The widespread deployment of tracking
or user analyzing scripts allows trackers to track users across websites. Since
browser fingerprinting is stateless (does not rely on client-side storage of iden-
tifiers), it is hard to detect and mitigate. Moreover, even the private mode of
browsers cannot prevent browser fingerprinting.

Existing fingerprinting detection and prevention methods rely on pre-defined
rules or known scripts [7,8,16,17]. Yet, not all of the prevention methods actu-
ally “protect” users [14], and some may even make the browser easier to be
fingerprinted [10]. Prevention methods like Tor browser [6] will sacrifice user
experience(e.g., disable HTML Canvas API and fix the window size). Modern
browsers like Firefox have carried out countermeasures against browser finger-
printing. However, we found that Amiunique [1], a website investigating browser
fingerprinting, can still uniquely identify the latest version of browsers. It is in
dire need of an approach to detect and prevent browser fingerprinting, which
motivated us to conduct this research.

Our Study. In this paper, we consider a website as performing browser finger-
printing if it collects fingerprinting attributes and sends them to the remote
server. We proposed FPFlow, a dynamic taint analysis approach to detect
and prevent browser fingerprinting, leading to potential violation of user pri-
vacy. FPFlow marks fingerprinting related attributes as taint source. During
JavaScript execution, FPFlow propagates taint between the objects. When
JavaScript tries to initiate a web request that carries taint, FPFlow considers it
as a fingerprinting request and can block it.

We conducted a large-scale measurement study on TRANCO top 10,000
websites, a more reliable ranking list than Alexa [27]. Our result showed that
6,661 websites transmitted fingerprinting attributes. We further analyzed the
fingerprinting attributes used in real-world websites and the behaviors of the
tracking scripts.

Contributions: Our main contributions are:

– We proposed a data flow-based method to detect and prevent browser finger-
printing by monitoring all potential fingerprinting data transmission.

– We implemented FPFlow, an in-browser dynamic JavaScript taint analysis
framework to detect and prevent browser fingerprinting with an acceptable
overhead of 9.2%.

– We performed a large-scale analysis on TRANCO top 10,000 websites. We
found 66.6% of websites are sending out fingerprinting attributes, and dis-
cussed the behaviors of the related scripts.

2 Related Work

Browser Fingerprinting. Browser fingerprinting is a method to identify a web
browser without a stateful identifier like Cookie. Browser fingerprint is gener-
ated with a set of browser attributes such as user agent and screen resolution.



FPFlow: Detect and Prevent Browser Fingerprinting 53

Eckersley [15] conducted the Panopticlick experiment in 2010. He used browser
properties such as user agent, cookie-enabled to generate fingerprints, and used
Flash or Java applets to probe system fonts. Among 286,777 fingerprints col-
lected, 94.2% of them are unique when Java or Flash is enabled. Other browser
properties such as battery status [26], installed fonts [18], and extensions [28–30]
can also be used as browser fingerprinting.

Hardware features can also be used as part of browser fingerprinting. HTML
Canvas and WebGL are widely studied as browser fingerprints representing hard-
ware features. Mowery et al. [23] and Acar et al. [7] showed that rendered data
in HTML Canvas has slightly difference in different machine or browser that can
be used as browser fingerprinting. Cao et al. [12] carefully designed 31 WebGL
rendering tasks and can identify 99.24% of users in their experiment. Englehardt
et al. [16] discovered AudioContext based browser fingerprinting when crawling
Alexa top sites for online tracking behavior analysis. They tested the feasibility of
AudioContext based browser fingerprinting and found 713 different fingerprints
among 18,500 users.

Detection of Browser Fingerprinting. To understand browser fingerprint-
ing prevalence in the real-world, existing work proposed different methods to
detect browser fingerprinting. Nikiforakis et al. [25] discovered 0.4% of websites
in Alexa top 10,000 sites performing fingerprinting by looking for three known
fingerprinting scripts.

Several works studied the adoption of browser fingerprinting by monitoring
JavaScript APIs. Acar et al. [8] performed a large-scale study of browser fin-
gerprinting on Alexa top 1 million sites. They modified the rendering engine
to capture access to browser properties that can be used to perform browser
fingerprinting. In 2014, Acar et al. [7] performed a large-scale study on Canvas
fingerprinting. They monitored the calls and returns to Canvas API to decide
whether a website performs browser fingerprinting and found 5,542 out of 100,000
sites were performing Canvas fingerprinting. Englehardt et al. [16] crawled Alexa
top 1 million websites by monitoring the access to JavaScript native APIs. They
found 14,317 sites performing Canvas fingerprinting and 67 sites performing
AudioContext fingerprinting.

Al-Fannah et al. [9] crawled Majestic 10,000 sites and checked the web
requests sent out by browser. A website is defined as engaging fingerprinting
if at least one of 17 properties is present in the requests. They identified 6,876
sites that were performing browser fingerprinting.

Iqbal et al. [19] used a machine learning method to detect browser finger-
printing scripts. They extracted the AST of scripts and runtime API accesses
as features and found that 22.7% of Alexa top 10,000 websites were performing
browser fingerprinting.

Prevention of Browser Fingerprinting. To mitigate browser fingerprint-
ing, Torres et al. [31] introduced FPBlock, a framework to generate a new fin-
gerprinting for each visited domain to prevent cross-domain tracking. FPRan-
dom [20], PriVaricator [24], and Disguised Chromium [11] are frameworks
that prevent fingerprinting by randomizing browser properties or Canvas data.



54 T. Li et al.

FaizKhademi et al. [17] proposed FPGuard. Their framework first detected
browser fingerprinting with 9 metrics. If suspicious behavior is detected,
FPGuard will modify the content of the fingerprint. Modern browsers have also
come up with fingerprinting protection strategies these years. Firefox blocks fin-
gerprinting related scripts with a tracking script list [2] to protect user from
browser fingerprinting.

Although various prevention methods have been proposed in academic
research, not all of them can actually “prevent” browser fingerprinting. Vas-
tel et al. [32] developed FP-Scanner to explore the inconsistencies of browser
fingerprinting to detect potential alters to fingerprinting attributes. Datta et al.
[14] evaluated 26 anti-fingerprinting tools and showed that not all of those pro-
tection methods are equal. Azad et al. [10] showed that all tools that attempt
to modify the JavaScript behavior are unique fingerprintable, which makes the
browser easier to be fingerprinted.

3 Motivation

Browser fingerprinting is a complex process in the JavaScript execution context.
Different fingerprinting scripts collect different properties and call different func-
tions to generate fingerprints. We call properties or functions used in browser
fingerprinting fingerprinting attributes. The fingerprint is generated on the
client-side and sent to tracking services through network requests. We call these
requests fingerprinting requests. To better understand browser fingerprinting,
we split the process of browser fingerprinting into five stages, as shown in Fig. 1.

Fig. 1. The process of browser fingerprinting.

Previous studies working on Canvas-based fingerprinting detection and pre-
vention [7,8,16,17] rely on rules defined by researchers. They monitor the access
to specific APIs on stage 2, but they could not confirm that the rendered data is
sent to the remote server. Their methods may lead to false-positive because
Canvas and WebGL are more and more widely used in real-world websites.
Besides, their methods cannot detect browser attributes based browser finger-
printing(e.g., the collection of user agent) because these attributes are likely to
be accessed in benign scripts. Al-Fannah’s study [9] checks whether the requests



FPFlow: Detect and Prevent Browser Fingerprinting 55

sent to remote server contains fingerprinting attributes in stage 4. However,
their work relies on the value of fingerprinting attributes. As a result, their work
cannot detect fingerprint encoding, which will miss some websites that perform-
ing fingerprinting. Nor can they detect Canvas based fingerprinting because the
canvas data is known before rendering.

In conclusion, existing work only focuses on a single stage of browser fin-
gerprinting. API monitoring based approaches focus on stage 2, and requests
checking-based approaches focus on stage 4. These methods do not take data
flow into consideration, so the accuracy and ability of fingerprint detection are
limited.

To fill the gap, we first define the browser fingerprinting behavior. We con-
sider a website performing browser fingerprinting if the client-side
JavaScript code collects fingerprinting attributes and sends them to
the remote server.

Note that websites may collect fingerprinting attributes for benign reasons
like user-agent statistics and language adaption. However, these websites are
still capable of tracking users with the collected data. Besides, the information
needed for providing client-side functionalities like user-agent and language can
be obtained in HTTP headers, which does not depend on JavaScript execution.
The website does not need to extract them from JavaScript context and send
them to the remote server, especially the third-party ones. As a result, we con-
sider websites that match our definition are all potentially involving browser
fingerprinting.

Based on the definition, we introduced data flow analysis to help detect and
prevent browser fingerprinting. We implemented a dynamic taint analysis frame-
work FPFlow. FPFlow is a modified Chromium browser. It marks all fingerprint-
ing attributes as taint source and all web request related functions as taint sink.
FPFlow tracks the full life cycle of fingerprinting attributes from stage 2 to
stage 4, and it can detect both browser attributes based fingerprinting and Can-
vas based fingerprinting. Our framework can recognize fingerprinting requests
and intercept them before sending them out to prevent browser fingerprinting.

4 Technique Approach

In this section, we introduce the technique approach of FPFlow. We first give
an overview of FPFlow in Sect. 4.1 to help understanding how FPFlow works.
The following parts of this section explain the implementation of FPFlow in
detail. Section 4.2 introduces the taint source and taint sink marked by FPFlow.
Section 4.3 introduces the taint table and taint name table used to store object
taints. Section 4.4 introduces bytecode instrument for runtime taint propagation
in FPFlow.

4.1 Overview

Figure 2 shows the abstract architecture overview of FPFlow. FPFlow extends
the JavaScript engine V8 and DOM engine Blink of Chromium with taint



56 T. Li et al.

Fig. 2. Abstract architecture of FPFlow.

tracking capabilities. (1) When FPFlow visits a website, it first instruments
the bytecode generated by the V8 engine to enable taint propagation. The
instrumented bytecode is then executed by the V8 engine. (2) When JavaScript
accesses the fingerprinting-related APIs in DOM, the V8 object is marked as
tainted. (3) During the script execution, FPFlow propagates the taint between
JavaScript objects and updates the taint table and taint name table. (4) When
JavaScript tries to send a web request, FPFlow will check if the request carries
taint before performing it. (5) If the URL or body of the request carries taint,
a taint sink is triggered, and the corresponding log is generated. FPFlow will
intercept such requests to prevent browser fingerprinting.

4.2 Taint Source and Taint Sink

The DOM interface of Blink is defined in WebIDL1 files. WebIDL files define the
properties and functions of DOM API. The V8-Blink binding code is generated
according to WebIDL files from the code templates. FPFlow marks the taint
source and sink properties or function in WebIDL files and modifies the code
templates to hook the access to the taint source and sink.

FPFlow marks all fingerprinting attributes as taint sources. Fingerprinting
attributes can be a property of the DOM element (e.g., Cookie) or the return
value of a function (e.g. toDataUrl). When V8 tries to access the fingerprinting
attributes, Blink will return an object to V8 that holds the value. If the attribute
is marked as tainted, the return value is tainted with the name of the attribute.

Web tracking services need to collect user’s fingerprints to identify users.
Thus, the network request is a key step in browser fingerprinting that leads to
privacy threats. FPFlow marks all network-related functions as taint sink. To
prevent browser fingerprinting, FPFlow checks whether the request URL or body
contains taint before the requests are actually processed. If the request contains

1 https://heycam.github.io/webidl/.

https://heycam.github.io/webidl/


FPFlow: Detect and Prevent Browser Fingerprinting 57

taints, it is a fingerprinting request, and a taint sink is triggered. To prevent
browser fingerprinting, FPFlow checks the taints carried by the request. If the
request is recognized as an fingerprinting request, FPFlow skips the original
request and returns an undefined object directly.

The example of marked taint source and taint sink is shown in Table 1.
FPFlow marks 72 fingerprinting attributes as taint source (70 browser properties
and 2 JavaScript functions) and 5 functions as taint sink. A full list of taint
sources is available at https://github.com/FPFlow/FPFlow-project.

Table 1. Selected taint source and sink.

Type DOM APIs

Source (72 in total) Properties userAgent, innerHeight, colorDepth, Cookie etc.

Functions toDataUrl, getChannelData

Sink (5 in total) XMLHTTPRequest, HTMLElement.src,

WebSocket, Fetch, Navigator.sendBeacon

4.3 Taint Table and Taint Name Table

To record the taint carried by JavaScript objects, FPFlow maintains a taint
table, a hash table keyed on the internal addresses of V8 objects in each V8
instance. Once an object is tainted, FPFlow will add the object into the taint
table along with its taint. When taint is propagated from an object to another
object, the data in the object table is updated. As FPFlow uses object address
as the key of taint table, there two special cases that need to be handled [13].

First, V8 garbage collection may move objects in memory. When the object is
destructed or moved by V8 GC (garbage collection), FPFlow deletes or updates
the corresponding entry in the taint table.

Second, Smi is a special type of JavaScript object in V8, which represents
integers between −230 and 230 − 1. The address allocation pattern for Smi is
different from other types of objects in V8. Smi objects with the same value share
one address (e.g., all Smi objects with value 0x14 shares address 0x1400000000).
This feature optimizes the JavaScript runtime performance, but it causes over-
taint in our system. FPFlow solves this problem with two steps. Firstly, FPFlow
ensures that all values from the taint source are not Smi. If the taint source’s
value is a Smi value, FPFlow will convert it to HeapNumber, another number
representation in V8. Secondly, FPFlow stops the conversion from any other
type to Smi. Our method ensures that any object that carries taint cannot be
Smi, and only introduces a slight performance overhead.

To accelerate taint propagation, the taint carried by an object is represented
as a bitset. A bit in the bitset represents a certain kind of taint. If the object
carries the taint, the bit in the bitset is set to 1. The taint propagation operation
can be simplified to the logic or operation. We maintain a taint name table, which
maps the string name of taint to the specific bit in the bitset. FPFlow maintains

https://github.com/FPFlow/FPFlow-project


58 T. Li et al.

one object taint table and one taint name table in each V8 instance to avoid
conflict.

4.4 Taint Propagation

Once Chromium receives JavaScript source code, V8 parses the source file and
generates the corresponding abstract syntax tree (AST). Then V8 generates
bytecode according to the AST. We implement taint propagation logic by instru-
ment additional bytecode in the V8 bytecode generation phase. The taint prop-
agation logic is wrapped in V8 runtime functions and called through a single
bytecode CallRuntime. Parameters related to taint propagation are passed to
the runtime function through registers. FPFlow considers direct taint propaga-
tion in the following scenarios:

– Property load: If object a is tainted, the properties of a like a.length carries
taint.

– Basic operations: Basic operations include mathematical operations, bit oper-
ations, logic expression. If one of the operands carries taint, the result of the
operation carries taint as well.

– Native function call: The native function calls in JavaScript are implemented
in C++. We need to propagate the corresponding taint when these functions
are called. These function includes encodeURIComponent, JSON.stringify,
toString, etc. If the parameter passed to the native function carries taint,
these functions’ return value also carries taints. We extract the address of
the native functions during V8 bootstrap and check if a called function is a
native function by comparing the function address.

An example of taint propagation is shown in Fig. 3. On line 1, the script gets
the value of navigator.vendor, the object that holds the value of variable x
carries the taint with name “navigator.vendor”. On line 2, the taint is propa-
gated from x to y because of the call to native functions. On line 3, the taint is
propagated from y to t because of binary operation add. On line 4, the script
tries to initiate a web request. The URL of the request (variable t) carries taint,
so a taint sink is triggered. FPFlow will log the sink event and intercept this
request.

Fig. 3. Example of taint propagation.



FPFlow: Detect and Prevent Browser Fingerprinting 59

4.5 Logging

FPFlow monitors all taint sinks and accesses to DOM API. For a taint sink,
FPFlow records its request method, target URL, the taint carried by the request
and the stack trace of the request. Each entry in the stack trace contains the
function name, the JavaScript file it belongs to and the line number. For API
access, FPFlow records the name of the accessed API and the access time.

5 Evaluation

In this section, we describe the experimental setup and present the result of
applying FPFlow on TRANCO top 10,000 websites. We did not use Alexa list
because previous research showed that Alexa rank is not stable and it changes
daily up to 20%, which makes comparability of results difficult [27]. We were
able to analyze the adoption of browser fingerprinting in those websites with
FPFlow. We found 66.6% of the websites transmitting browser fingerprinting,
which leads to potential browser fingerprinting based tracking. We also measured
the effectiveness of FPFlow in preventing browser fingerprinting.

5.1 Experimental Setup

We crawled the homepage of TRANCO top 10,000 sites and gathered their
behavior with FPFlow. FPFlow was driven by puppeteer [5] for automatically
testing. To avoid the interference between websites caused by cookies or browsing
history, we used a new browser instance for each website during the crawling
process.

We captured all the script data during the crawling process. We used mitm-
proxy [4] to intercept all requests to JavaScript files and stored them for further
analysis. In addition, we also used js-beautify [3] to format all JavaScript files
captured by mitmproxy so that FPFlow could get a clear stack trace when the
taint sink is triggered.

We waited for 120 s on each website during crawling to capture as many
requests as possible. Meanwhile, we need to leave enough time for JavaScript
code formatting since the size of loaded JavaScript code could be very large in
modern web applications.

5.2 Large Scale Experiment Result

The crawling process took 30 h to complete. The detailed result is available at
https://github.com/FPFlow/FPFlow-project. During the experiment, 40 web-
sites (0.4%) did not work properly (e.g., did not respond or returned an HTTP
error). In 9,960 successful crawled websites, 6,661 sites collected fingerprinting
attributes from user browsers and sent them to remote servers. We refer to such
websites as fingerprinting websites. Among the 6,661 fingerprinting websites,
6043 sent user data to the third-party domain, while 2,094 sent data to both
first-party and third-party domains.

https://github.com/FPFlow/FPFlow-project


60 T. Li et al.

Table 2. Usage of tracking services.

Tracker domain Sites

doubleclick.net 5,208

google-analytics.com 4,333

google.com 2,006

googlesyndication.com 1,370

rubiconproject.com 1,354

facebook.com 1,274

adnxs.com 754

rlcdn.com 596

casalemedia.com 581

criteo.com 493

Table 3. Usage of attributes.

Attribute Used sites

UserAgent 6,397

Cookie 6,346

AppVersion 4,512

History:Length 4,473

Resolution 3,072

Platform 3,010

NavigatorLanguage 2,952

CookieEnabled 2,948

Screen:ColorDepth 2,319

Navigator:NavigatorPlugins 2,204

Fig. 4. Number of tracking services. Fig. 5. Number of attributes collected.

We analyzed the tracking services that fingerprinting requests are sent to.
Table 2 shows the most frequently used tracking services. We found that the
most commonly used browser fingerprinting service providers are Google. We
found 4,900 websites sending data to Google related domains2.

We find that 5,363 websites send user data to more than one fingerprint-
ing service. Figure 4 shows the number of tracking services used by TRANCO
websites. Among 6,661 fingerprinting websites, the fingerprinting attributes were
sent to an average of 5.59 domains. The maximum number of domains the fin-
gerprinting attributes were sent to is 74.

Fingerprinting Attributes Collected by Tracking Services. The most
used fingerprinting attributes are shown in Table 3. The widely used attributes
are widely discussed in previous researches [15,25].

2 google-analytics.com, doubleclick.net, google.com, googlesyndication.com.



FPFlow: Detect and Prevent Browser Fingerprinting 61

We found that document.cookie is widely used in browser fingerprinting.
This is because those tracking scripts are likely to store user fingerprint data in
cookie data. The tracking service provider can track fingerprint changes in the
client browser caused by software, operating system, and hardware update.

For rendering-based fingerprinting, we found 713 websites performing Can-
vas fingerprinting (including WebGL fingerprinting). Although previous research
showed that Canvas fingerprinting could achieve high accuracy, it is not widely
used in real-world websites, probably due to compatibility or performance rea-
sons. We extract the initiator script of requests carry Canvas data. By manually
inspecting the scripts, we found that Canvas fingerprinting scripts deployed to
real-world websites mainly based on two open-source projects fingerprintjs3 and
Picasso based canvas fingerprinting4. By matching the keyword fingerprintjs
and picasso-like-canvas, we found 334 websites use the fingerprintjs library,
and 192 websites use the Picasso library.

We also find an obfuscated canvas fingerprinting script5 is used by 88 web-
sites. Our experiment found 49 websites performing AudioContext based finger-
printing.

We use the API trace recorded by FPFlow and filter rules from previous
research to find Canvas-based font probing. More specifically, a website is per-
forming Canvas-based font probing if it sets the font property on a Canvas to
more than 20 different fonts and calls measureText over 20 times. We found
331 sites use Canvas-based font probing. We also found scripts using CCS-based
font probing. This method is a part of fingerprintjs library. It first creates a span
element, fills in some text, and sets a default font for text in span. To check if
a font F is supported, the script creates another span element, fills in the same
text, and sets the font to F. If the width and height of the two span elements
are different, font F is supported in the browser.

The number of fingerprinting attributes collected by each website is shown in
Fig. 5. A website collects 13.74 attributes on average, and the maximum number
of collected taints is 55.

Request Methods. Table 4 shows the fingerprinting request methods used by
TRANCO websites. We found that the most used request method is GET request
with src attribute and POST request with XMLHTTPRequest. We also found that
Fetch, SendBeacon, and WebSocket are also widely used in fingerprinting scripts,
which is not mentioned in previous browser fingerprinting research.

Fingerprinting Initiator Scripts. We extract the initiator scripts of finger-
printing requests by analyzing the stack trace when the taint sink is triggered
and comparing the initiator script with the target of the requests. Our result
shows that the most used scripts are from the top user tracking services. We
analyzed the number of different domains that a tracking script sends requests
to. Most of these scripts initiate requests to a single domain. Some scripts will

3 https://github.com/fingerprintjs/fingerprintjs.
4 https://github.com/antoinevastel/picasso-like-canvas-fingerprinting.
5 https://www.zalando.de/akam/11/2a40e12f.

https://github.com/fingerprintjs/fingerprintjs
https://github.com/antoinevastel/picasso-like-canvas-fingerprinting
https://www.zalando.de/akam/11/2a40e12f


62 T. Li et al.

Table 4. Fingerprinting request methods.

Request method Used sites

XMLHTTPRequest 5,999

Element.src 4,795

Fetch 1,600

sendBeacon 1,319

WebSocket 128

send user data to several related domains. For example, scripts from google will
send data to google-analytics.com, google.com, googlesyndication.com
and doubleclick.net. We also find that some scripts try to load many differ-
ent tracking scripts. We refer to these scripts as tracker loader. For example,
we found 78 websites use tracking service from cdn.krxd.net. Each website
using this tracking service has a configuration script indicating what third-party
tracking service needs to be loaded.

Figure 6 is an example of the configuration script from cdn.krxd.net. The
loader script from cdn.krxd.net will load all third-party trackers into the web
page. Besides, the third-party trackers loaded by cdn.krxd.net use an id gen-
erated by the loader script, and the id is shared with those third-party services.
This means the third-party services can also track the user with the help of the
tracking service provided by cdn.krxd.net.

Fig. 6. A example of fingerprinting configuration script with shared user ID.

Fingerprinting Beacon. Our experiment shows that many sites sent user data
to a URL many times. These requests contain the same or different parame-
ters. We call a website sending fingerprinting beacon if it sends more than 5
requests to a single URL. We found 860 websites are sending fingerprint beacons,
and 674 sites are sending out fingerprint beacons with different parameters each
time.



FPFlow: Detect and Prevent Browser Fingerprinting 63

We analyzed the stack trace of the beacon requests and extracted the func-
tion names in the stack. We searched for keywords event and interval in func-
tion names and found matched function names in fingerprinting beacon from 57
sites. The matched function names includes postEvent, trackAnalyticsEvent,
GoogleAnalyticsEventTracking and setInterval. By manually analyze the
web page, we found that these requests are triggered at regular intervals or
when a specific event is triggered. For example, we found the script from jd.com
add fingerprinting events to the logo of the page. The fingerprinting request
is triggered when the user moves the mouse over the logo. This indicates that
the tracking service is tracking the user’s visit history and recording the user’s
detailed browsing behavior.

5.3 Evaluate the Accuracy of Taint Analysis

The lack of standard reference for browser fingerprint usage and the huge vol-
ume of front-end code make it difficult to analyze them all. Therefore, we eval-
uated the FPFlow detection results mainly by random sampling and manual
verification.

We randomly selected 50 websites that use browser fingerprinting. These 50
sites contain 400 requests containing tainted requests. We analyzed these browser
fingerprint requests manually. We determined whether the requests were false
positives by analyzing the information carried in the requests and the logic of
the script code that initiated the requests. In our manual analysis, we found
39 requests to be FPFlow false positives. The estimated false positive rate of
FPFlow is 9.75%.

5.4 Fingerprinting Prevention

Collection of only a few fingerprinting attributes is not enough to generate a
precise fingerprint for client user. As prevention method, we consider a request
as fingerprinting request if (1) it is using Canvas based fingerprinting or Audio-
Context based fingerprinting, or (2) it carries more than 10 taints.

To test the usability, we tested the extended FPFlow by manually browsing
the top 50 sites in the TRANCO list. We stopped for 1 min to perform basic
operations for each site, like click the link and log in. The fingerprinting requests
were successfully blocked, and we did not observe any abnormalities during the
test.

Previous research [19] discussed the page breakage caused by request block-
ing. They stated that URL blocking-based protection could affect the user expe-
rience because request blocking will block the content loading. FPFlow won’t
block the resource loading request (e.g., loading content from a tracker or adver-
tising domain). Instead, FPFlow only intercepts data transmission requests. We
found that these requests seldom return data. For example, many fingerprinting
requests using src attributes requests for a zero-size GIF image. Such requests
are only used for collecting client data, and they do not load anything. As a
result, blocking such requests will not cause breakage to the web page.



64 T. Li et al.

We also evaluated the overhead of FPFlow by comparing it with the original
Chromium browser. Since the API access monitoring feature of FPFlow is only
used to compare the result with previous work and introduces relatively large
IO overhead, we disabled the API access monitoring feature in the performance
testing. We selected the TRANCO top 100 sites and loaded them with FPFlow
and original Chromium. We recorded the time from the start of the two browsers
to the end of the page loading. The performance overhead ranges from 6% to
13%, with an average of 9.2%.

6 Discussion

Our Improvements to Previous Approaches. Comparing with API moni-
toring based detection and prevention [7,8,16,17], FPFlow can reduce false pos-
itives. We found radio garden6, an online FM website using Canvas and WebGL
to generate the background of the page. The API access trace of this website
contains many operations related to WebGL, and the generated image data is
retrieved through API toDataURL. It is likely for previous work to mistake this
website as performing Canvas fingerprinting. However, FPFlow showed that the
rendered data is not sent to the remote server.

Fig. 7. Fingerprinting encoding script.

We found that encoding or hashing browser fingerprints is a common practice.
The encoded fingerprinting is transmitted through the web or stored in Cookie as
a user identifier. Comparing with request checking based detection [9], FPFlow
is not limited by fingerprint encoding since encoding or hashing does not cut
off taint propagation. Figure 7 is a formatted code snippet from https://wl.jd.
com/wl.js. The fingerprinting data (including location, user agent, and rendered
Canvas data) is hashed with the MD5 algorithm.

Limitations. Although FPFlow can detect fingerprinting attributes transmis-
sion, it has several limitations. First, FPFlow propagates taint only with explicit
data flow, and it is not able to propagate with implicit data flow, which results
in false negative. As a result, our experiment revealed the lower bound of the

6 http://radio.garden/.

https://wl.jd.com/wl.js
https://wl.jd.com/wl.js
http://radio.garden/


FPFlow: Detect and Prevent Browser Fingerprinting 65

current deployment of potential browser fingerprinting. Second, FPFlow can-
not detect WebRTC fingerprinting and JavaScript font probing because these
techniques do not rely on the return value of certain API. These fingerprint-
ing methods can be detected with the API accessing pattern, as mentioned in
previous researches.

7 Conclusion

In this paper, we introduced FPFlow, a pure dynamic taint analysis framework
upon Chromium to detect and prevent browser fingerprinting. FPFlow monitors
the data flow from retrieving fingerprinting attributes to sending them to track-
ing service. Based on FPFlow, we conducted a large-scale browser fingerprinting
detection on TRANCO top 10,000 sites and found that 66.6% of the websites
are transmitting fingerprinting data, leading to potential fingerprinting based
tracking. Meanwhile, our experiments revealed the behavior of fingerprinting
scripts such as tracker loader and fingerprinting beacon. We also showed that
FPFlow could prevent browser fingerprinting with no sacrifice to user experi-
ence. Our work introduces data flow analysis to have a better understanding of
how browser fingerprinting is adopted in the real world.

References

1. Amiunique. https://amiunique.org/fp
2. Firefox’s protection against fingerprinting. https://support.mozilla.org/en-US/kb/

firefox-protection-against-fingerprinting
3. JS-beautify. https://github.com/beautify-web/js-beautify
4. mitmproxy. https://mitmproxy.org/
5. Puppeteer. https://pptr.dev/
6. Tor project. https://www.torproject.org/
7. Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan, A., Diaz, C.: The

web never forgets: persistent tracking mechanisms in the wild. In: Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security,
pp. 674–689 (2014)

8. Acar, G., Juarez, M., Nikiforakis, N., Diaz, C., Gürses, S., Piessens, F., Preneel,
B.: FPDetective: dusting the web for fingerprinters. In: Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security, pp. 1129–
1140 (2013)

9. Al-Fannah, N.M., Li, W., Mitchell, C.J.: Beyond cookie monster amnesia: real
world persistent online tracking. In: Chen, L., Manulis, M., Schneider, S. (eds.)
ISC 2018. LNCS, vol. 11060, pp. 481–501. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99136-8 26

10. Amin Azad, B., Starov, O., Laperdrix, P., Nikiforakis, N.: Short paper - taming
the shape shifter: detecting anti-fingerprinting browsers. In: Maurice, C., Bilge,
L., Stringhini, G., Neves, N. (eds.) DIMVA 2020. LNCS, vol. 12223, pp. 160–170.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52683-2 8

https://amiunique.org/fp
https://support.mozilla.org/en-US/kb/firefox-protection-against-fingerprinting
https://support.mozilla.org/en-US/kb/firefox-protection-against-fingerprinting
https://github.com/beautify-web/js-beautify
https://mitmproxy.org/
https://pptr.dev/
https://www.torproject.org/
https://doi.org/10.1007/978-3-319-99136-8_26
https://doi.org/10.1007/978-3-319-99136-8_26
https://doi.org/10.1007/978-3-030-52683-2_8


66 T. Li et al.

11. Baumann, P., Katzenbeisser, S., Stopczynski, M., Tews, E.: Disguised chromium
browser: robust browser, flash and canvas fingerprinting protection. In: Proceedings
of the 2016 ACM on Workshop on Privacy in the Electronic Society, pp. 37–46
(2016)

12. Cao, Y., Li, S., Wijmans, E., et al.: (cross-) browser fingerprinting via OS and
hardware level features. In: NDSS (2017)

13. Chen, Q., Kapravelos, A.: Mystique: uncovering information leakage from browser
extensions. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1687–1700 (2018)

14. Datta, A., Lu, J., Tschantz, M.C.: Evaluating anti-fingerprinting privacy enhancing
technologies. In: The World Wide Web Conference, pp. 351–362 (2019)

15. Eckersley, P.: How unique is your web browser? In: Atallah, M.J., Hopper, N.J.
(eds.) PETS 2010. LNCS, vol. 6205, pp. 1–18. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14527-8 1

16. Englehardt, S., Narayanan, A.: Online tracking: a 1-million-site measurement and
analysis. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1388–1401 (2016)

17. FaizKhademi, A., Zulkernine, M., Weldemariam, K.: FPGuard: detection and pre-
vention of browser fingerprinting. In: Samarati, P. (ed.) DBSec 2015. LNCS, vol.
9149, pp. 293–308. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
20810-7 21

18. Fifield, D., Egelman, S.: Fingerprinting web users through font metrics. In: Böhme,
R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 107–124. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-47854-7 7

19. Iqbal, U., Englehardt, S., Shafiq, Z.: Fingerprinting the fingerprinters: learning to
detect browser fingerprinting behaviors. arXiv preprint arXiv:2008.04480 (2020)

20. Laperdrix, P., Baudry, B., Mishra, V.: FPRandom: randomizing core browser
objects to break advanced device fingerprinting techniques. In: Bodden, E., Payer,
M., Athanasopoulos, E. (eds.) ESSoS 2017. LNCS, vol. 10379, pp. 97–114. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-62105-0 7

21. Laperdrix, P., Bielova, N., Baudry, B., Avoine, G.: Browser fingerprinting: a survey.
ACM Trans. Web (TWEB) 14(2), 1–33 (2020)

22. Laperdrix, P., Rudametkin, W., Baudry, B.: Beauty and the beast: diverting mod-
ern web browsers to build unique browser fingerprints. In: 2016 IEEE Symposium
on Security and Privacy (SP), pp. 878–894. IEEE (2016)

23. Mowery, K., Shacham, H.: Pixel perfect: fingerprinting canvas in HTML5. In: Pro-
ceedings of W2SP, pp. 1–12 (2012)

24. Nikiforakis, N., Joosen, W., Livshits, B.: PriVaricator: deceiving fingerprinters with
little white lies. In: Proceedings of the 24th International Conference on World
Wide Web, pp. 820–830 (2015)

25. Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., Vigna, G.:
Cookieless monster: exploring the ecosystem of web-based device fingerprinting.
In: 2013 IEEE Symposium on Security and Privacy, pp. 541–555. IEEE (2013)

26. Olejnik, �L, Acar, G., Castelluccia, C., Diaz, C.: The leaking battery. In:
Garcia-Alfaro, J., Navarro-Arribas, G., Aldini, A., Martinelli, F., Suri, N. (eds.)
DPM/QASA -2015. LNCS, vol. 9481, pp. 254–263. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-29883-2 18

27. Pochat, V.L., Van Goethem, T., Tajalizadehkhoob, S., Korczyński, M., Joosen,
W.: Tranco: a research-oriented top sites ranking hardened against manipulation.
arXiv preprint arXiv:1806.01156 (2018)

https://doi.org/10.1007/978-3-642-14527-8_1
https://doi.org/10.1007/978-3-642-14527-8_1
https://doi.org/10.1007/978-3-319-20810-7_21
https://doi.org/10.1007/978-3-319-20810-7_21
https://doi.org/10.1007/978-3-662-47854-7_7
http://arxiv.org/abs/2008.04480
https://doi.org/10.1007/978-3-319-62105-0_7
https://doi.org/10.1007/978-3-319-29883-2_18
https://doi.org/10.1007/978-3-319-29883-2_18
http://arxiv.org/abs/1806.01156


FPFlow: Detect and Prevent Browser Fingerprinting 67

28. Sjösten, A., Van Acker, S., Sabelfeld, A.: Discovering browser extensions via web
accessible resources. In: Proceedings of the Seventh ACM on Conference on Data
and Application Security and Privacy, pp. 329–336 (2017)

29. Starov, O., Laperdrix, P., Kapravelos, A., Nikiforakis, N.: Unnecessarily identifi-
able: quantifying the fingerprintability of browser extensions due to bloat. In: The
World Wide Web Conference, pp. 3244–3250 (2019)

30. Starov, O., Nikiforakis, N.: XHOUND: quantifying the fingerprintability of browser
extensions. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 941–956.
IEEE (2017)

31. Torres, C.F., Jonker, H., Mauw, S.: FP-Block : usable web privacy by controlling
browser fingerprinting. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS
2015. LNCS, vol. 9327, pp. 3–19. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24177-7 1

32. Vastel, A., Laperdrix, P., Rudametkin, W., Rouvoy, R.: FP-scanner: the privacy
implications of browser fingerprint inconsistencies. In: 27th {USENIX} Security
Symposium ({USENIX} Security 18), pp. 135–150 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-24177-7_1
https://doi.org/10.1007/978-3-319-24177-7_1
http://creativecommons.org/licenses/by/4.0/

	FPFlow: Detect and Prevent Browser Fingerprinting with Dynamic Taint Analysis
	1 Introduction
	2 Related Work
	3 Motivation
	4 Technique Approach
	4.1 Overview
	4.2 Taint Source and Taint Sink
	4.3 Taint Table and Taint Name Table
	4.4 Taint Propagation
	4.5 Logging

	5 Evaluation
	5.1 Experimental Setup
	5.2 Large Scale Experiment Result
	5.3 Evaluate the Accuracy of Taint Analysis
	5.4 Fingerprinting Prevention

	6 Discussion
	7 Conclusion
	References




