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Abstract. In this paper we propose a novel approach to classify
darknet-access traffic with only partial traffic data, which significantly
reduces resource consumption and is as accuracy as prior work. Besides,
in order to keep up with the users’ real access activity, we simulate new
and old user by simply whether delete the cached consensus document
before each access and apply our approach. The experiment results con-
firm that there does exist a window of cell sequence contributes greatly to
distinguish darknet-access traffic. With the window size 75 and the start
point 67, we can achieve 95.97% accuracy for new user access scenario.
Similarly, with the window size 85 and the start point 44, we achieve
94.43% accuracy for old user access scenario.
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1 Introduction

Tor [14], a low-latency anonymity network, has emerged as an important privacy-
enhancing tool protecting users’ online privacy, i.e. hiding the users’ IP address
while communicating on the Internet. Nowadays, with more than two million
users daily [1], Tor is considered to be one of the most popular anonymous com-
munication systems consisting of nearly 7000 volunteer-operated relays, which
are run from all around the world.

Besides protecting client’s privacy, Tor also allows servers to operate anony-
mously by offering hidden services (HSs). HSs allow users, in particular those
living in oppressive regimes, e.g., human right activists and whistle-blowers, to
bypass censorship and to exercise freedom of speech by publishing and offering
access to sensitive content without the fear of being targeted, arrested or forced
to shut down. As a result, many sensitive contents are hosted and only accessed
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through HSs, forming a deep-dark cyberspace for criminals [4]. Hence, it is nec-
essary to comprehensively evaluate the level of protection provided by this novel
anonymity mechanism.

Unfortunately, attackers can classify whether a user is accessing hidden ser-
vice and even infer which specific hidden service a user has visited. With mali-
cious nodes controlled, attacker performs circuit fingerprinting attack can easily
distinguish hidden service related circuits both at the guard [8] and middle [6]
position of a circuit, the attack significantly depends on the number of nodes
controlled. What’s more, a local observer which eavesdrops traffic between the
sender and the first anonymization relay node, can distinguish whether a user is
accessing hidden service [11] and guess the user’s destination without decryption,
called Website Fingerprinting attack (WF attack) [5,10,12,13,15–17]. With the
help of machine-learning or deep learning models, prior works treat each whole
traffic trace as input to extract features, which is not suitable for online classi-
fication scenario.

In this paper we propose a novel approach to classify darknet-access traffic
with only partial traffic data, which significantly reduces resource consumption
and is as accuracy as prior work. Besides, in order to keep up with the users’
real access activity, we simulate new and old user by simply whether delete the
cached consensus data before each access. Moreover, we collect direct cell logs by
modifying Tor source code to record the basic information of each cell, and use
the direct cell logs as ground truth to analysis the nuance between darknet-access
and general access activity. By digging into the access process thoroughly, we
find that there exists a window of cell sequence contributes greatly to distinguish
darknet-access related traffic. With the window size 75 and the start point 67,
we can achieve 95.97% accuracy for new user access scenario. With the window
size 85 and the start point 44, we can achieve 94.43% accuracy for old user access
scenario.

The contributions of this paper are listed as follows:

– As far as we know, as a network level attack, we are the first to use par-
tial traffic data to classify darknet-access activity, which is also much more
practical and applicable in online manner.

– In order to verify our method, we capture a large and practical dataset by
simulating new and old user access activity. Besides, we make the generated
dataset publicly available1, allowing researchers to replicate our results and
systematically evaluate new approaches in the future.

– Based on the dataset we collected, we use the direct cell logs to determine
the proper window size and the start point of the darknet-access activity.
Then, we transform traffic traces into cell sequences and conduct activity
classification experiments, the experimental results verify that it does work
that with a proper window size and start point can effectively distinguish
darknet-access activity from general access activity.

1 The dataset can be found on the following URL: https://github.com/Meiqiw/
mingan/.

https://github.com/Meiqiw/mingan/
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Organization. The rest of the paper is organized as follows. In Sect. 2, we illus-
trate the background on Tor and hidden service design as well as the attacker
threat model. In Sect. 3, we describe the data collection and processing methodol-
ogy, generating the dataset for analysis. We next present, in Sect. 4, our observa-
tions and experiment results regarding differences between darknet-access activ-
ity and general access activity. We introduce the related work in Sect. 5 and the
conclusion in Sect. 6.

2 Background

In this section, we will provide the necessary background on Tor as well as the
functionality of the Tor hidden services. Then, we describe the threat model of
our attack.

2.1 Tor

A user starts the anonymous journey by simply unzipping the Tor browser bun-
dle, which contains the Onion Proxy (OP) and a customized Firefox browser.
The OP performs as an bridge between users’ applications and the Tor net-
work. Before user sends his application data over the Tor network, the OP must
learn about Tor’s relays, Onion Routers, by downloading the network consensus
document from directory servers. And then select three relays: an entry guard,
middle and exit node, creating circuits incrementally and interactively. The OP
encapsulate application data into 514-byte fixed-size cells as its communication
data unit, forwarded though the created circuit hop by hop. Tor builds circuits
hop by hop like an onion, and the details of the circuit construction process
as follow. Firstly, the OP sends a create2 cell to establish the circuit with the
guard relay, which responds with a created2 cell. Secondly, the OP sends an
extend2 command cell to the guard relay, which parses the cell and correspond-
ingly sends a create cell to the middle relay node to establish the circuit on
behalf of the user, thus a tunnel between the user and the middle relay has been
created. Finally, the OP sends another extend2 command cell to the middle relay
through the tunnel just created, causing the middle relay sends a create cell to
the exit node correspondingly. And then the circuit between the OP and the
exit relay has been created, then a begin cell is relayed the exit node building a
TCP connection to the final destination. Figure 1 demonstrates the 3 hop circuit
construction process as well as the cells exchanged between OP and the guard
relay for general Tor connections.

The TCP connection between each hop of a Tor circuit is secured with TLS.
Moreover, Tor multiplexes circuits within a single TCP connection. Precisely,
An OP-OR TCP connection multiplexes all circuits from the same user while an
OR-OR TCP connection multiplexes circuits for various users simultaneously. An
ISP level attacker who monitors the OP-OR TCP connection can not distinguish
which TCP packet belongs to which circuit as all circuits exists in the same one
TCP connection.
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Fig. 1. Circuit construction details

2.2 Hidden Service Components

Hidden service was introduced in 2004 as a feature of Tor, providing anonymity of
responders by hidden the location information while offering service. According
to the protocol specification [2], the hidden service architecture consists of the
following five components, as shown in Fig. 2:

– HS: Hidden Server is the information provider which hosts various services,
such as WEB, MAIL.

– OP: User accesses the Tor network by running Tor client instance name as
Onion Proxy (OP).

– RP: Rendezvous Point is the Tor relay which is chosen by the OP randomly,
forwarding traffic on behave of OP while concealing the location at the same
time.

– IP: Introduction Point maintains a long-term circuit and forwards the
requests from clients to the hidden service.

– HSDir: Hidden Service Directory is a Tor relay which has the flag HSDir,
acting as a database for storing and retrieving hidden service information.

Next, we describe the steps to set up a hidden service in Tor and establish a
connection to it.

– Firstly, the HS chooses three onion routers as its IPs, and then builds circuits
to each IPs by sending a relay-establish-intro cell respectively. Upon receiv-
ing such a cell, the IPs send back relay-intro-established cell with an empty
payload to inform that the circuits have been successfully established.

– After establishing circuits to IPs, the HS builds a circuit to the HSDirs chosen
to advertise the service descriptor, the cell sequences exchanged is shown in
Fig. 3. After that, the HS owner can advertise the onion address in the surface
Web with the form z.onion.

– After receiving an onion address, the Tor client creates circuits to HSDirs
responsible for the specific HS and retrieves HS descriptor from which the
client learns the information about IPs.
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Fig. 2. Hidden service architecture

– The Client randomly chooses a pre-created circuit and picks the last hop as
the RP and builds a circuit to that onion router by sending a relay-establish-
rendezvous cell which carries the rendezvous cookie, and the RP replies with
an empty relay-rendezvous-established cell, indicating that the rendezvous
circuit has been successfully built.

– The Client then builds separate circuits to one of the IPs extracted from
the HS descriptor. The Client sends a relay-introduce1 cell contains the ren-
dezvous cookie, the fingerprint of RP and the hash of the public key of the
HS along the introduction circuit.

– Once the IP receiving relay-introduce1 cell, it sends the relay-introduce2 cell
to corresponding HS, according to the hash of the public key. The relay-
introduce2 cell also contains the rendezvous cookie generated by Client and
the fingerprint of RP.

– Upon receiving the relay-introduce2, HS decrypts it with the private key and
extract rendezvous cookie and RP’s fingerprint. Then, the HS extends a cir-
cuit to RP according to the fingerprint and sends a relay-rendezvous1 cell
containing rendezvous cookie.

– At last, RP binds two circuits which have the same rendezvous cookie, so as to
deliver relay cells from each of the two circuits to the other, and sends a relay-
rendezvous2 cell to Client which denotes the beginning of communication
between Client and HS.

In this way, the OP and HS communicates successfully without any leakage of
their anonymity. Figure 4 demonstrates the cell exchange process in detail. From
the description introduced above, there does exist significant differences between
hidden service related activity and general access activity, indicating that it is
possible to distinguish hidden service related activity from others.
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2.3 Threat Model

In this work, we assume a network level attacker which is: local, meaning that
he has access only to the connection between the OP and the guard relay node,
and passive, i.e., he can only collect the network packets and can not delay, drop,
modify or decrypt even them. Precisely, we assume the attacker is the Internet
Service Providers (ISP). Figure 5 illustrates the attack scenario: the user access
both general web service and hidden service over the Tor network and intercepts
the traffic between the user and the Tor network. We assume that the attacker
knows the user’s identity and only aims at distinguishing the darknet-access
activity from numerous connections.

Within this attack scenario, we make several assumptions about the attacker
goals and capabilities.

Traffic Parsing: The ISP attacker has access to all OP-OR TCP connections
built by huge amount users concurrently, and able to record the traffic packet
meta-data of the both direction, including timestamp, srcIP, srcPort, dstIP, dst-
Port, packetSize, direction. As what has been mentioned above, the ISP attacker
can only distinguish each OP-OR TCP connection but can not identify each cir-
cuit multiplexed in one TCP connection while a node level attacker does.

Goals: In this work, we assume the ISP level attacker only focus on identifying
that a user is connected to hidden service (darknet-access activity) within huge
amount TCP connections as effective as possible, or even the real time scenario.
Identifying which website the user surfs is out of the coverage of this work.



Efficient Classification of Darknet Access Activity 119

Fig. 5. The threat model

3 Data Collection and Processing

In this section, we propose our new data collection method and describe our
experimental setup. Then we describe the data extraction procedure as well as
giving a brief introduction of our dataset.

3.1 Data Collection

In order to simulate users’ access activity over the Tor network more realistically,
we define two scenarios: delete Tor cached documents and not delete. The former
scenario aims at simulating a user who use Tor network for the first time, while
the latter scenario for simulating a user who use Tor network access the Web
just now. The reason is that new user needs download Tor consensus document
before building circuits while the old user not needs, making totally difference
in the number connection built as well as packet pattern transferred.

We use a distributed setup, utilizing 3 Virtual Machines (VMs) on cloud
environment provided by Vultr2. These virtual machines are located in different
countries including Singapore, France and the United States, so as to ensure the
diversity of traces. Each VM is configured with 2 CPUs and 8 GB of RAM. On
each VM, 10 docker instances are deployed, and each docker with a separate Tor
process (version 0.4.4.6). To access the Tor network, we use Selenium3 (version
3.12.0) to control headless browser Firefox (version 60.0.2), utilizing a SOCKS5
proxy listened by Tor. We recorded the traces of web pages leveraging tcpdump4.
Web pages are given 120 s to load, and upon loading the page, it was left open
for an additional 10 s, after which the browser is closed and the Tor process is
killed. As for new user scenario, the cached data in the DataDirectory such as
cached consensus, server descriptors, is deleted automatically each time. Next,
tcpdump and Tor process are restarted. A script to monitor the bootstrap status
of the Tor process is deployed ensuring Tor is ready before each visit.
2 http://vultr.com.
3 http://www.seleniumhq.org/.
4 http://www.tcpdump.org/.

http://vultr.com
http://www.seleniumhq.org/
http://www.tcpdump.org/
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Table 1. Data collection for both scenarios

Website WebsiteTrace Onion OnionTrace

Delete cache 8155 13504 8755 14594

Not delete 7754 20622 8267 22255

With this setup, new connections and circuits are established each time as the
client visits a website, ensuring that we never used the same circuit to download
more than one instance of a single page. What to be mentioned is that one
trace may contains multi connections, we split all connections and build dataset
for our attack as the network level attacker does. While recording the traffic
trace, we also record the connection creation, circuit construction, stream info,
cell sequences into the notice log file by modifying Tor source code, aiming at
showing light on the real activity Tor instance occurs during darknet-access as
well general-access activity. By performing statistics on the connection, circuit,
stream as well as cell, we reveal the difference between darknet-access activity
and general-access activity in two scenarios described above. Those statistic
results have theoretical significance for the attack approach we proposed.

Following our data collection method, we use Alexa Top websites and Tor
hidden services5 as our target website for both scenarios, each with 10,000 web-
sites. Similar to the previous work, after data collection, we filtered out invalid
traces and outliers, which caused by timeout or crash of the browser or Selenium
driver. Eventually, we obtained huge amount of traces as shown in Table 1, each
trace accomplished with one corresponding notice log file.

3.2 Data Extraction and Processing

In general, as in many previous work [12,13,17], we represent the data as a
sequence of [+1, −1], where each +1 or −1 represents a cell, which is the most
basic communication unit of Tor, and the sign indicates whether the direction
of the cell is from the client to the Tor entry node or vice versa. As a result,
an input instance of our model is a series of 1 and −1. In the experiment, we
truncated the input sequences to a fixed length, and filled the sequences less
than this length with 0. As asserted in [12], neural networks generally work
with real numbers from the compact interval [−1, 1] due to the nature of the
mathematical operations they perform. Moreover, by providing the input data
in such a format, we avoid having to rescale and/or normalize the values and
thus mitigate a possible information loss coupled with the preprocessing step.

5 As the prior work, we chose hidden services based on the list provided by the .onion
search engine http://www.ahmia.fi/.

http://www.ahmia.fi/
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Our dataset contains two type of data: traffic traces and cell records.
With the cell records, we split the cell sequences according to different connec-
tionID, generating cell sequences of one specific connection, which commonly
multiplexed with multiple circuits. For the traffic traces, we split each traffic
trace into different flows. And then transfer each flow into TCP packet sequences,
TLS record sequences as well as cell sequences. The detail processing procedure
described as follows respectively.

Cell Record Processing. By parsing the notice log file, many basic infor-
mation about the connection, circuit, cell are extracted, including connection
creation time, connectionID, circuitID, cell command and direction etc. Firstly,
we order cells of each circuit with timestamp and tag the circuit with differ-
ent flags according to the circuit purpose. We divide circuit into five categories:
create-fast, meaning that this circuit is built for downloading consensus docu-
ments at bootstrapping process, client-data, meaning that this circuit is built
for access non-hidden service related data, client-ip, client-rp, client-hsdir,
those three are hidden service related, and others. Secondly, we select circuits
belongs to the same connection and put corresponding cells together, generat-
ing the cell sequence of one specific connection. At last, we tag each connection
according to the circuits categories multiplexed in the same connection.

Traffic Trace Processing. As shown in Fig. 6, at the application layer, Tor
embeds the encrypted data into a fixed-size (514-byte) packet, which is called a
cell. And the cell is further embedded into the TLS record. Multiple cells can be
grouped into a single TLS record. Finally, in the transport layer, TLS records are
typically fragmented into multiple TCP packets, the size of which is limited by
the Maximum Transmission Unit (MTU). Note that several TLS records can be
within a single TCP packet. As for collected traffic traces, our process performs
as follows: Firstly, we cut each visit traffic trace file into multi flows according to
four-meta tuple (srcIP, srcPort, destIP, destPort), ensuring each flow contains
and only contains one connection. Secondly, we tag each connection the same
category as the connection recorded in the notice log file which processed in
the prior subsection. What’s more, we parse the single flow pcap files into TCP
packet sequences and TLS record sequences, with the help of Tshark6 (version
1.12.1), an industrial grade widely used tool for network traffic analysis. At last,
we extract cell sequences from the TLS record sequences following the method
proposed by [17], thus translating each connection traffic packet traces into cell
sequences tagged with corresponding categories. A slight difference from [17] is
that we divide the length of the TLS record by 514 instead of 512, because with
the upgrade of the Tor protocol, the length of the cell has changed from a fixed
512 bytes to 514 bytes. Therefore, we believe that this treatment is much more
closer to the real situation.

DATASET MingAn21. After completing the above operation, we even-
tually obtained MingAn21, consisting of two subsets: (i) 15,000 instances of
hidden service related, general website related and others each, corresponding
6 https://www.wireshark.org/docs/man-pages/tshark.html.

https://www.wireshark.org/docs/man-pages/tshark.html
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to the delete cache scenario (ii) 10,000 instances of hidden service related and
general website related each, corresponding to the not delete cache scenario. Our
dataset contains both direction and time information of each cell.

4 Evaluation and Discussion

In this section, we firstly perform location statistic of hidden service related cell
commands with the real cell record parsed from the notice log file, revealing the
possible position of establish rendezvous and rendezvous2 cell in one single
connection. Next, we provide an evaluation of the different classification methods
of prior work with proper length of cell sequences, finding the state-of-the-art as
the one we use in this paper. At last, we perform iterative experiments to learn
the best choice of the start point and window size to perform our attack.

4.1 Position Distribution Observation

According to our data collection method, we record two type of data for every
connection: raw traffic packets and real cell sequences. We record some basic cell
data including cell command name, cell direction and timestamp. With the cell
command name, we can clearly notice the activity the Tor instance is doing. As
for hidden service related activity, establish rendezvous and rendezvous2
cell are import functional cells during the OP-HS connection construction pro-
cedure, indicating the start and success signals correspondingly. In order to have
a clear understanding the position of those two functional cells within one single
connection, we perform statistics on all the record cell sequences parsed from the
notice log file for both two scenarios. In detail, we statistic the absolute position
of establish rendezvous and rendezvous2 as well as the interval distance in the
unit of one connection.

As shown in Fig. 7, in most cases establish rendezvous cells are send after 69
and receive rendezvous2 cell before 147 with a window size of 72 in the delete
cache document scenario. However, in not delete cache document scenario, most
establish rendezvous cells are send after 45 and receive rendezvous2 cell before
130 with a window size of 73. It is oblivious that, in most cases, hidden service
related functional cell signals of not delete document scenario occur much earlier
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(a) Establish Rendezvous Cell Position
Distribution of Delete Scenario

(b) Establish Rendezvous Cell Position
Distribution of Not Delete Scenario

(c) Rendezvous2 Cell Position Distribu-
tion of Delete Scenario

(d) Rendezvous2 Cell Position Distribu-
tion of Not Delete Scenario

(e) Interval Distance Distribution of
Delete Scenario

(f) Interval Distance Distribution of Not
Delete Scenario

Fig. 7. Position statistic results on both scenarios

than that of delete cache document scenario. From the statistic results, we draw
the conclusion that there does exist a fragment of cell sequences contribute sig-
nificantly on distinguishing hidden service related activity and that it is possible
to filter hidden service related activity only with partial cell sequences.
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4.2 Comparison of Different Classification Methods

In this subsection, we reproduce the classification methods of prior work on
our dataset MingAn21, finding the state-of-the-art as the method we use in
this paper. In order to check the robustness and accuracy, we increase the cell
sequences from 40 to 140 with a step by 10 iteratively by setting the radio of
training, validation and testing as 1:1:2. With the above setting, we perform our
experiments on both scenarios with different classification methods, including
CNN [12], LSTM [12], SDAE [12], DF [13], k-NN [16], CUMUL [10] and k-FP [5].

(a) Delete Cache Document (b) Not Delete Cache Document

Fig. 8. Different classification on both scenarios

As shown in Fig. 8, the DF classification method performs the best with
excellent robustness as well as accuracy for both scenarios. As for the delete
cache document scenario, with the cell sequences length at 40, deep learning
related classification methods achieve much better accuracy than that of machine
learning methods do. As the increase of the cell sequence length more than 70,
the performance of DF method increases rapidly and keeps stable. As for the
not delete cache document scenario, KFP and DF both achieve better accuracy
and stability as the cell sequence increases. As DF achieves better performance
in both scenarios, we take DF as our classification method used in this paper.

4.3 Classification with Partial Cell Fragment

In this section, we try to search the best value of the start point and win-
dow size for the DF classification method for both scenarios. We refer the
search space as S * W, which S indicates the space of start point and W indi-
cates the window size. According to the observation described above, we set
S belongs to [start point-2, start point, start point+2] and W belongs to [win-
dow size-2, end point-start point]. In delete cache document scenario, S belongs
to [67, 68, 69, 70, 71] and W belongs to [70, 71, 72, 73, 74, 75, 76, 77, 78]. And in not
delete cache document scenario, S belongs to [43, 44, 45, 46, 47] and W belongs to
[71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85]. Then, by setting the radio of
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training, validation and testing as 1:1:2, we perform experiments with DF clas-
sification method iteratively by increase the S and W parameter with a step
by 1. The final results are illustrated in Fig. 9, with the window size 75 and
the start point 67, we can achieve 95.97% accuracy for delete cache document
scenario. With the window size 85 and the start point 44, we can achieve 94.43%
accuracy for not delete cache document scenario. The result verifies that it is
possible to classify hidden service access and general service access activity as
efficient as prior work while significantly reduce the resource cost. With 75 and
85 cell sequences respectively, in both scenarios, a network level attacker can
distinguish whether a user is accessing hidden service or general service with a
high accuracy without decrypting the packets.

Fig. 9. Different classification on both scenarios

The most relative work to us is Panchenko et al. [11], in contrast to this work,
our approach only use 75 or 85 cell sequences of each trace while achieving as
good performance as the prior work. Moreover, in terms of training time, with
much less data for training, our approach is also much effective than the prior
work.

5 Related Work

Many attacks have been proposed to challenge the security of Tor hidden ser-
vices. Most of these threat models assume that the attacker is active, that is,
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the adversary has the ability to modify the monitored traffic, or influence the
routing of relays. For example, Biliukov et al. [3] proposed that when a malicious
RP receives relay-introduce1 sent by the hidden service, it sends a message to
the hidden service consisting of 50 padding ucells. This signal allows another
malicious OR along the circuit from the hidden service to the RP to identify
the hidden service or its entry guard on the circuit. Another example, Jansen
et al. [7] proposed a memory-based DoS attack. The attacker identifies and dis-
ables the entry node of the target HS, thereby forcing the server to choose a new
guard. Chen et al. [9] proposed a novel approach discovering the hidden service
or its entry guard in a parallel manner by embedding numerous hidden services
identification into rendezvous cookie.

In contrast, the adversary in our threat model is passive, that is, the attacker
can only record the traffic he monitors, but cannot modify or drop them. It
is worth mentioning that a study similar to our research method is Website
Fingerprint Attack, which uses traffic classification to identify which website Tor
users have visited. The difference is that we need to answer whether Tor users
have accessed hidden services, or just used Tor to access a website that can be
accessed through a normal browser. Although we have different granularities of
traffic classification, many outstanding works [5,10,12,13,15–17] in the WFP
field are also of great reference value.

Unfortunately, only few prior studies pay attention to how to distinguish
whether a user is accessing a hidden service. According to the ability and location
of attackers, they can be divided into node level attackers and network level
attackers. With malicious entry node controlled, node level attackers record the
circuit creation signals as well as cell sequences silently and traffic data in a
passive manner. With the information collected, the node level attacker perform
traffic analysis attacks to infer whether the user has accessed a specific hidden
service. However, network level attackers located on the path between user and
the first anonymization node, can collect and only collect the traffic data with
much more widely visibility.

Node Level Attacker. Kwon et al. [8] showed that hidden services’ traffic
can be distinguished from regular websites with more than 90% accuracy from
a malicious entry node perspective. Recently, Jansen et al. [6] performed circuit
fingerprinting attach from the middle relay position, demonstrating that traffic
fingerprinting techniques are as effective as prior works shown from a guard relay
perspective. However, the result of this kind of attack significantly depends on
the number of nodes attacker controlled.

Network Level Attacker. Hayes and Danezis [5] find that the onion sites
can be discriminated from other regular web pages with 85% true positive rate
and only 0.02% false positive from a dataset of 100,000 sites. Panchenko et
al. [11] use machine learning methods to distinguish hidden service related traffics
accurately and scales well, with a precision more that 0.9 and a recall at least 0.8.
With the help of machine-learning or deep learning models, prior works treat
each whole traffic trace as input to extract features, which is not suitable for
online classification scenario.
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In our paper, we innovatively examine the existence of the fragment of cell
sequences and explore the effectiveness of only use partial traffic data for distin-
guishing darknet-access activity from general access activity.

6 Conclusion

In this paper we have analyzed the susceptibility of darknet-access activity to
the traffic analysis attack. To this end, we proposed a novel approach to classify
darknet-access traffic with only partial traffic data, which significantly reduces
resource consumption and is as accuracy as prior work. In order to verify the
effectiveness and applicable for practical scenario, we conduct experiments both
on new and old user scenario. The results depict that there does exist a window
of cell sequences contribute greatly to distinguish darknet-access traffic. More-
over, our approach performs as well as state-of-the-art methods with respect to
classification accuracy. Thus, with only partial traffic data we can distinguish
darknet-access activity effectively with much less resources, which can be applied
in online classification scenario.
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