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Foreword

Alternating direction method of multipliers (ADMM) is an important algorithm for
solving constrained optimization problems. It particularly fits well for the machine
learning community because the latter basically favors algorithms with low per-
iteration cost and does not need high numerical precision. Due to its versatility and
high usability, I would not hesitate to make it one of the top recommendations
if one wants to develop a general-purpose optimization library or AI chip. So
there has been renewed interest on ADMM since its successful application in
solving low-rank models around 2010. Since then, ADMM has been extended
significantly, going far beyond the traditional setting: deterministic, convex, two-
blocks of variables, and centralized. Unfortunately, the vast literature on ADMM
is scattered across various sources, making it difficult for non-experts to track the
advances in this important optimization technique. This book resolves this issue in a
timely manner. Its materials are quite comprehensive, covering ADMM for various
situations: convex (and deterministic), nonconvex, stochastic, and distributed. It is
self-contained, with detailed proofs, so that even a beginner can grasp the state-
of-the-art quickly, not just the pseudo-codes but also the proof techniques. More
importantly, this book has not simply compiled various papers together. It has
actually completely rewritten the materials so that the notations are consistent
and the deductions are smooth, removing the major obstacle of reading existing
literatures. In addition, the book puts more emphasis on convergence rates rather
than only convergence. This makes the theoretical analysis extremely informative
to practitioners. I would say that this book is definitely a valuable reference for
researchers and practitioners from multiple areas, including optimization, signal
processing, and machine learning.

The authors, Zhouchen Lin, Huan Li, and Cong Fang, are experts in the
intersection of optimization and machine learning. Besides contributing greatly
to this field with technical papers, they have also endeavored a lot in sorting
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viii Foreword

out valuable algorithms that are fit for engineers, making another kind of good
contribution to the community. After their previous book, Accelerated Optimization
for Machine Learning: First-Order Algorithms, which I like very much, I am happy
to advocate their book once more.

Xi’an Jiaotong University, Xi’an, China Zongben Xu
October 2021



Foreword

With the advance of sensor, communication, and storage technologies, data acqui-
sition has become more ubiquitous than any time in the past. This has enabled us
to learn a considerable amount of valuable information from big diverse data sets
for effective inference, estimation, tracking, and decision-making. Learning from
data requires the proper modelling and analysis of big data sets, which are usu-
ally formulated as optimization problems. Consequently, large-scale optimization
involving big data has attracted significant attention from various areas, including
signal processing, machine learning, and operations research.

To minimize a cost function involving a large number of variables, the most
popular approach is block coordinate descent/minimization (sometimes also called
alternating optimization). However, if variables are coupled linearly, the block
coordinate descent/minimization method no longer works. The alternating direction
method of multipliers (ADMM) can be considered an extension of block coordinate
descent/minimization method for linearly constrained optimization problems. Given
the abundance of application problems that can be cast in the form of linearly con-
strained optimization problems (convex/nonconvex, smooth/nonsmooth), ADMM
has been the method of choice for machine learning and signal processing problems
involving big data. It is widely (sometimes wildly) applied in many different
contexts, often times without sufficient theoretical underpinning on its convergence.

This book provides an excellent summary of the state of the art for the theoretical
research on ADMM. It introduces the basic mathematical form of ADMM as well
as its variations. The core material is on the convergence analysis of ADMM for
different classes of linearly constrained optimization problems, including convex,
nonconvex, deterministic, stochastic, and centralized/distributed. The mathematical
treatment is concise, up to date, and rigorous. A nice bonus is the last chapter where
the practical aspects of ADMM are discussed, which should be very valuable for
practitioners or first-time users of ADMM.

The first author is a well-known researcher in optimization, particularly on
optimization methods for machine learning applications. The text is written in a
reader friendly manner, complete with appendices that introduce the mathematical
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tools and background for the convergence analysis covered in the book. It should be
a valuable reference for both researchers and users on ADMM and will be a great
read for graduate students in optimization, statistics, machine learning, and signal
processing.

The Chinese University of Hong Kong, Shenzhen, China Zhi-Quan Luo
November 2021



Preface

Alternating direction method of multipliers (ADMM) is a magic algorithm to me. In
my biased opinion, it is more or less a universal method for solving a wide range of
constrained problems that ordinary practitioners in machine learning may encounter.
Unlike gradient descent, which is roughly a universal method for unconstrained
problems, ADMM appears to be more elegant yet less transparent. The secret
lies in the Lagrange multiplier, which temporarily makes the constrained problem
unconstrained, not only removing the difficulty in handling the constraints but also
overcoming some inherent defects of the penalty method and the projected gradient
descent, while non-experts are much easier to think of the latter two methods.
The Lagrange multiplier also plays a central role in the proofs of convergence and
convergence rate of ADMM. With possible exaggeration, I would say that one who
cannot appreciate the beauty of ADMM cannot be a good researcher in optimization.

Since my first encounter with ADMM around 2009, I have seen that more
and more machine learning people are using ADMM and extending its scope
of applications. I also benefited a lot from and contributed a bit to the new
developments. Yet, I also found that many engineers are not using ADMM correctly
(the most notable example is to naively apply the ADMM for two blocks of variables
to problems with more than two blocks). There has been an excellent tutorial
on ADMM, Distributed Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers, written by Boyd et al. in 2011. Nonetheless, it is
now 10 years old and does not cover the new developments, which I actually think
are more important than the traditional ones for the wider applications of ADMM,
because the new developments were done out of demands from real applications
in signal processing and machine learning. So, I think that writing a new book on
ADMM will be very useful for many people, including myself when teaching and
advising students. My goal is to incorporate the most important aspects of the new
developments in ADMM, rather than being confined to the traditional materials,
which are typically for convex and two-block cases. Clearly, I am unable to review
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Prof. Bingsheng He

all papers on ADMM. So, the strategy is to choose representative algorithms by their
types (e.g., convex, nonconvex, stochastic, and distributed) instead. As a result, one
should not be surprised that some variants of ADMM are not included (because
they are not the most representative ones of their types but just discuss in more
depth, or are too complex to use or analyze) while some variants of ADMM appear
to be rather crude but they are still included (because that type of ADMM is less
explored). Of course, personal flavor and limited knowledge also matter greatly.
Finally, being self-contained is also very important. So, I also want to present proofs
in detail.

I truly feel lucky as my former PhD students, Huan Li and Cong Fang, agreed
to join this task even though they have graduated, and I have tortured them in
the previous book, Accelerated Optimization for Machine Learning: First-Order
Algorithms. I am also very lucky that more students contributed to the proofreading,
including checking the proofs thoroughly (most of the proofs have undergone
rewriting, rather than being directly copied from corresponding papers), which
made the work less daunting. Nonetheless, the book is still far from being perfect.
One of the major regrets is that using adaptive penalty is critical for speeding up
convergence (see Sect. 7.1.2), but all the algorithms introduced in this book use
a fixed penalty. Actually, most of the literatures do not consider adaptive penalty.
Although it is quite possible that some of the algorithms introduced in this book
may also work with adaptive penalties, we are unable to test which adaptive penalty
strategy to use and then rewrite the proofs for adaptive penalties (actually drastic
changes in the proofs may be necessary). The other regret is that we have to leave
out learning-based ADMM, an emerging yet immature type of ADMM, as the
theoretical guarantees are weak.

I expect that there will still be errors in the book despite the great efforts from my
students and myself. So, if the readers detect any problem, please feel free to write
an email to zclin2000@hotmail.com.

Finally, I would like to pay tribute to Prof. Bingsheng He. He has devoted most
of his life to ADMM and contributed significantly to the research and education of
ADMM. This book also introduces many of his works. I am glad to see that he has
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been well recognized in China, manifested by winning the “Operations Research”
Research Award of the Operations Research Society of China in 2014. However, he
is much less recognized internationally. I hope that my advocacy here could add to
his credit.

Peking University, Beijing, China Zhouchen Lin
October 2021
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About the Book

This book introduces the basic concepts of ADMM and its latest progress. Specifi-
cally, it introduces various ADMMs under different scenarios: convex and determin-
istic ADMM (Chap. 3), nonconvex and deterministic ADMM (Chap. 4), stochastic
ADMM (Chap. 5), and distributed ADMM (Chap. 6). To make the book self-
contained, it gives the detailed proofs of the convergence rates for most of the
introduced algorithms.

This book serves as a useful reference to the recent advances in ADMM. It is
appropriate for graduate students and researchers who are interested in optimization
or practitioners who seek a powerful tool for optimization.
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