Skip to main content

Certificateless Authentication and Consensus for the Blockchain-Based Smart Grid

  • Conference paper
  • First Online:
Frontiers in Cyber Security (FCS 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1558))

Included in the following conference series:

Abstract

Authentication and key agreement scheme facilitates secure two-way communication in the smart grid (SG) and enables each entity to verify whether the received message comes from a legitimate sender. Also, it assists in establishing the shared key that will be used to secure subsequent communication. Several schemes of authentication and key agreement have been proposed over the last few years, but many of them are not efficient in terms of communication overhead and computational overhead. In addition to that, they do not adequately adhere to the fundamental security of the smart grid authentication, such as forward secrecy. In this paper, we suggest a certificateless authentication and consensus for a blockchain-based smart grid. The proposed protocol has a lightweight communication overhead and puts less computation cost on the smart meter. Furthermore, it satisfies the fundamental security requirements of the smart grid, plus consensus in the blockchain. Besides, the security of the proposed protocol is rooted in the intractability assumption of the elliptic curve discrete logarithm (ECDL) problem, and it is proved using the random oracle model (ROM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghasempour, A.: Internet of things in smart grid: architecture, applications, services, key technologies, and challenges. Inventions 4(1), 22 (2019)

    Article  Google Scholar 

  2. Komninos, N., Philippou, E., Pitsillides, A.: Survey in smart grid and smart home security: issues, challenges and countermeasures. IEEE Commun. Surv. Tutor. 16(4), 1933–1954 (2014)

    Article  Google Scholar 

  3. Li, W., Li, R., Wu, K., Cheng, R., Su, L., Cui, W.: Design and implementation of an SM2-based security authentication scheme with the key agreement for smart grid communications. IEEE Access 6, 71194–71207 (2018)

    Article  Google Scholar 

  4. Li, X., et al.: A provably secure and anonymous message authentication scheme for smart grids. J. Parallel Distrib. Comput. 132, 242–249 (2019)

    Article  Google Scholar 

  5. Mahmood, K., Chaudhry, S.A., Naqvi, H., Shon, T., Ahmad, H.F.: A lightweight message authentication scheme for smart grid communications in power sector. Comput. Electr. Eng. 52, 114–124 (2016)

    Article  Google Scholar 

  6. Mwitende, G., Ye, Y., Ali, I., Li, F.: Certificateless authenticated key agreement for blockchain-based WBANs. J. Syst. Architect. 110, 101777 (2020)

    Article  Google Scholar 

  7. Kim, T., et al.: The PKI-based device authentication system for AMI

    Google Scholar 

  8. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  9. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5_29

    Chapter  Google Scholar 

  10. Agarkar, A., Agrawal, H.: A review and vision on authentication and privacy preservation schemes in smart grid network. Secur. Priv. 2(2), e62 (2019)

    Article  Google Scholar 

  11. NETL Modern Grid Strategy: Advanced metering infrastructure. US Department of Energy Office of Electricity and Energy Reliability (2008)

    Google Scholar 

  12. Zhou, J., Hu, R.Q., Qian, Y.: Scalable distributed communication architectures to support advanced metering infrastructure in smart grid. IEEE Trans. Parallel Distrib. Syst. 23(9), 1632–1642 (2012)

    Article  Google Scholar 

  13. Winter, T.: The advantages and challenges of the blockchain for smart grids (2018)

    Google Scholar 

  14. He, D., Wang, H., Khan, M.K., Wang, L.: Lightweight anonymous key distribution scheme for smart grid using elliptic curve cryptography. IET Commun. 10(14), 1795–1802 (2016)

    Article  Google Scholar 

  15. Sakhnini, J., Karimipour, H., Dehghantanha, A., Parizi, R.M., Srivastava, G.: Security aspects of internet of things aided smart grids: a bibliometric survey. Internet Things 14, 100111 (2019)

    Google Scholar 

  16. Belhadi, A., Djenouri, Y., Srivastava, G., Jolfaei, A., Lin, J.C.W.: Privacy reinforcement learning for faults detection in the smart grid. Ad Hoc Netw. 119, 102541 (2021)

    Google Scholar 

  17. Kaveh, M., Mosavi, M.R.: A lightweight mutual authentication for smart grid neighborhood area network communications based on physically unclonable function. IEEE Syst. J. 14(3), 4535–4544 (2020)

    Article  Google Scholar 

  18. Kaveh, M., Aghapour, S., Martin, D., Mosavi, M.R.: A secure lightweight signcryption scheme for smart grid communications using reliable physically unclonable function. In: 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), pp. 1–6. IEEE (2020)

    Google Scholar 

  19. Elkhalil, A., Elhabob, R., Eltayieb, N., et al.: An efficient signcryption of heterogeneous systems for internet of vehicles. J. Syst. Architect. 113, 101885 (2021)

    Article  Google Scholar 

  20. Li, F., Liu, B., Hong, J.: An efficient signcryption for data access control in cloud computing. Computing 99(5), 465–479 (2017). https://doi.org/10.1007/s00607-017-0548-7

    Article  MathSciNet  MATH  Google Scholar 

  21. Ahene, E., Qin, Z., Adusei, A.K., Li, F.: Efficient signcryption with proxy re-encryption and its application in smart grid. IEEE Internet Things J. 6(6), 9722–9737 (2019)

    Article  Google Scholar 

  22. Mahmood, K., Chaudhry, S.A., Naqvi, H., Kumari, S., Li, X., Sangaiah, A.K.: An elliptic curve cryptography based lightweight authentication scheme for smart grid communication. Futur. Gener. Comput. Syst. 81, 557–565 (2018)

    Article  Google Scholar 

  23. Abbasinezhad-Mood, D., Nikooghadam, M.: Design and hardware implementation of a security-enhanced elliptic curve cryptography based lightweight authentication scheme for smart grid communications. Futur. Gener. Comput. Syst. 84, 47–57 (2018)

    Article  Google Scholar 

  24. Chen, Y., Martínez, J.F., Castillejo, P., López, L.: A bilinear map pairing based authentication scheme for smart grid communications: PAuth. IEEE Access 7, 22633–22643 (2019)

    Article  Google Scholar 

  25. Wu, T.Y., Lee, Y.Q., Chen, C.M., Tian, Y., Al-Nabhan, N.A.: An enhanced pairing-based authentication scheme for smart grid communications. J. Ambient Intell. Hum. Comput., 1–13 (2021)

    Google Scholar 

  26. Fouda, M.M., Fadlullah, Z.M., Kato, N., Lu, R., Shen, X.S.: A lightweight message authentication scheme for smart grid communications. IEEE Trans. Smart grid 2(4), 675–685 (2011)

    Article  Google Scholar 

  27. Mwitende, G., Ali, I., Eltayieb, N., Wang, B., Li, F.: Authenticated key agreement for blockchain-based WBAN. Telecommun. Syst. 74(3), 347–365 (2020)

    Article  Google Scholar 

  28. Depuru, S.S.S.R., Wang, L., Devabhaktuni, V., Gudi, N.: Smart meters for power grid-challenges, issues, advantages and status. In: 2011 IEEE/PES Power Systems Conference and Exposition, pp. 1–7. IEEE (2011)

    Google Scholar 

  29. Siano, P.: Demand response and smart grids-a survey. Renew. Sustain. Energy Rev. 30, 461–478 (2014)

    Article  Google Scholar 

  30. Huang, X., Susilo, W., Mu, Y., Zhang, F.: On the security of certificateless signature schemes from Asiacrypt 2003. In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds.) CANS 2005. LNCS, vol. 3810, pp. 13–25. Springer, Heidelberg (2005). https://doi.org/10.1007/11599371_2

    Chapter  Google Scholar 

  31. Huang, X., Mu, Y., Susilo, W., Wong, D.S., Wu, W.: Certificateless signature revisited. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 308–322. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73458-1_23

    Chapter  Google Scholar 

  32. Du, H., Wen, Q., Zhang, S., Gao, M.: A new provably secure certificateless signature scheme for internet of things. Ad Hoc Netw. 100, 102074 (2020)

    Article  Google Scholar 

  33. Jakobsson, M., Pointcheval, D.: Mutual authentication for low-power mobile devices. In: Syverson, P. (ed.) FC 2001. LNCS, vol. 2339, pp. 178–195. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46088-8_17

    Chapter  Google Scholar 

  34. Hassan, A., Eltayieb, N., Elhabob, R., Li, F.: An efficient certificateless user authentication and key exchange protocol for client-server environment. J. Ambient. Intell. Humaniz. Comput. 9(6), 1713–1727 (2017). https://doi.org/10.1007/s12652-017-0622-1

    Article  Google Scholar 

  35. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3), 361–396 (2000)

    Article  Google Scholar 

  36. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security, pp. 62–73 (1993)

    Google Scholar 

  37. Choon, J.C., Hee Cheon, J.: An identity-based signature from gap Diffie-Hellman groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_2

    Chapter  Google Scholar 

  38. Liu, J., Zhang, Z., Chen, X., Kwak, K.S.: Certificateless remote anonymous authentication schemes for wirelessbody area networks. IEEE Trans. Parallel Distrib. Syst. 25(2), 332–342 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the Sichuan Science and Technology Program (grant no. 2021YFG0157).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nkurunziza, E., Mwitende, G., Tandoh, L., Li, F. (2022). Certificateless Authentication and Consensus for the Blockchain-Based Smart Grid. In: Cao, C., Zhang, Y., Hong, Y., Wang, D. (eds) Frontiers in Cyber Security. FCS 2021. Communications in Computer and Information Science, vol 1558. Springer, Singapore. https://doi.org/10.1007/978-981-19-0523-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0523-0_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0522-3

  • Online ISBN: 978-981-19-0523-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics