Skip to main content

Tetracycline Intelligent Target-Inducing Logic Gate Based on Triple-Stranded DNA Nanoswitch

  • Conference paper
  • First Online:
Book cover Bio-Inspired Computing: Theories and Applications (BIC-TA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1565))

  • 662 Accesses

Abstract

A previously unreported three-strand DNA (ts-DNA) non-metal structure with hairpin structure was designed based on a strategy of logic switching and tetracycline (TC) signaling molecule switching. Will target and TC-binding aptamer (TBA) is the combination of body, and its relation with three functional chain DNA conformation, with programmable DNA sensor signal by FAM input molecule fluorescence emission monitoring. After the combination, the input signal is converted to a fluorescent signal to perform a logical operation. By introducing a novel nanomaterial, graphene oxide (GO), as a signal regulator, the fluorescence response changed by intermolecular interactions is the key to achieving logical calculation. The harm of tetracycline can generally cause kidney damage, ear damage, gastrointestinal adverse reactions, skin allergies, etc.Using tetracycline as a molecular trigger to induce conformational changes in DNA, a logical operation target detection method was constructed. In addition, nanoscale devices can be reconfigured and optimized to accommodate additional logical calculations and target detection.

S. Xi and Y. Wang—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Douglas, S.M., Bachelet, I., Church, G.M.: A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070), 831–834 (2012)

    Article  Google Scholar 

  2. Petralia, S., Forte, G., Zimbone, M., Conoci, S.: The cooperative interaction of triplex forming oligonucleotides on DNA-triplex formation at electrode surface: Molecular dynamics studies and experimental evidences. Coll. Surf. B 187, 110648 (2020)

    Article  Google Scholar 

  3. Deng, J.K., Tao, Z.H., Liu, Y.Q., Lin, X.D., Qian, P.C., Lyu, Y.L., et al.: A target-induced logically reversible logic gate for intelligent and rapid detection of pathogenic bacterial genes. Chem. Commun. 54(25), 3110–3113 (2018)

    Article  Google Scholar 

  4. Li, J., Green, A.A., Yan, H., Fan, C.H.: Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat. Chem. 9(11), 1056–1067 (2017)

    Article  Google Scholar 

  5. Wang, K.M., He, Q., Zhai, F.H., Wang, J., He, R.H., Yu, Y.L.: Biosens. Bioelectron. 105, 159–165 (2018)

    Article  Google Scholar 

  6. Ma, C., Liu, H.Y., Tian, T., Song, X.R., Yu, J.H., Yan, M.: A simple and rapid detection assay for peptides based on the specific recognition of aptamer and signal amplification of hybridization chain reaction. Biosens. Bioelectron. 83, 15–18 (2016)

    Article  Google Scholar 

  7. Sun, Y.L., Fan, J.F., Cui, L.Y., Ke, W., Zheng, F.J., Zhao, Y.: Fluorometric nanoprobes for simultaneous aptamer-based detection of carcinoembryonic antigen and prostate specific antigen. Microchim. Acta. 186(3), 1–10 (2019)

    Google Scholar 

  8. Wang, Y., et al.: G-quadruplex-bridged triple-helix aptamer probe strategy: a label-free chemiluminescence biosensor for ochratoxin A. Sens. Actuat. B Chem. 298, 126867 (2019). https://doi.org/10.1016/j.snb.2019.126867

    Article  Google Scholar 

  9. Malhotra, B.D., Srivastava, S., Ali, M.A., Singh, C.: Nanomaterial-based biosensors for food toxin detection. Appl. Biochem. Biotechnol. 174(3), 880–896 (2014). https://doi.org/10.1007/s12010-014-0993-0

    Article  Google Scholar 

  10. Zhou, D.H., Wu, W., Li, Q., Pan, J.F., Chen, J.H.: A label-free and enzyme-free aptasensor for visual Cd2+ detection based on split DNAzyme fragments. Anal. Methods-UK 11(28), 3546–3551 (2019)

    Article  Google Scholar 

  11. Chen, J., et al.: Highly active G-quadruplex/hemin DNAzyme for sensitive colorimetric determination of lead(II). Microchim. Acta 186(12), 1–8 (2019). https://doi.org/10.1007/s00604-019-3950-3

    Article  Google Scholar 

  12. Xiong, Z.W., Liu, Q.L., Yun, W., Hu, Y., Wang, X.M., Yang, L.Z.: Dual-entropy-driven catalytic amplification reaction for ultra-sensitive and visible detection of Hg2+ in water based on thymine-Hg2+-thymine coordination chemistry. Analyst 144(17), 5143–5149 (2019)

    Article  Google Scholar 

  13. Santiago, I.: Trends and innovations in biosensors for COVID‐19 mass testing. ChemBioChem. 21(20), 2880–2889 (2020). https://doi.org/10.1002/cbic.202000250

    Article  Google Scholar 

  14. Kaushik, S., Kukreti, S.: Formation of a DNA triple helical structure at BOLF1 gene of human herpesvirus 4 (HH4) genome. J. Biomol. Struct. Dyn. 39, 3324–3335 (2020)

    Google Scholar 

  15. Frank-Kamenetskiiun, M.D., Mirkin, S.M.: Triplex DNA structures. Annu. Rev. Biochem. 64, 65–95 (1995)

    Article  Google Scholar 

  16. Dervan, P., Doss, R., Marques, M.: Programmable DNA binding oligomers for control of transcription. Curr. Med. Chem.-Anti-Cancer Agents 5(4), 373–387 (2005). https://doi.org/10.2174/1568011054222346

    Article  Google Scholar 

  17. Zhao, Y.H., Wang, Y., Liu, S., Wang, C.L., Liang, J.X., Li, S.S., et al.: Triple-helix molecular-switch-actuated exponential rolling circula amplification for ultrasensitive fluorescence detection of miRNAs. Analyst 144(17), 5245–5253 (2019)

    Article  Google Scholar 

  18. Zeng, P., Hou, P., Jing, C.J., Huang, C.Z.: Highly sensitive detection of hepatitis C virus DNA by using a one-donor-four-acceptors FRET probe. Talanta 185, 118–122 (2018)

    Article  Google Scholar 

  19. Han, Y.P., Zhang, F., Gong, H., Cai, C.Q.: Functional three helix molecular beacon fluorescent “turn on” probe for simple and sensitive simultaneous detection of two HIV DNAs. Sens. Actuat. B-Chem. 281, 303–310 (2019)

    Article  Google Scholar 

  20. Chen, X.X., Chen, T.S., Ren, L.J., Chen, G.F., Gao, X.H., et al.: Triplex DNA Nanoswitch for pH-sensitive release of multiple cancer drugs. ACS Nano 13(6), 7333–7344 (2019)

    Article  Google Scholar 

  21. Amodio, A., Adedeji, A.F., Castronovo, M., Franco, E., Ricci, F.: pH-controlled assembly of DNA tiles. J. Am. Chem. Soc. 138(39), 12735–12738 (2016)

    Article  Google Scholar 

  22. Amodio, A., et al.: Rational design of pH-controlled DNA strand displacement. J. Am. Chem. Soc. 136(47), 16469–16472 (2014)

    Article  Google Scholar 

  23. Yao, D.B., Li, H., Guo, Y.J., Zhou, X., Xiao, S.Y., Liang, H.J.: A pH-responsive DNA nanomachine-controlled catalytic assembly of gold nanoparticles. Chem. Commun. 52(48), 7556–7559 (2016)

    Article  Google Scholar 

  24. Zhou, J.H., Rossi, J.: Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug. Discov. 16(3), 181–202 (2017)

    Article  Google Scholar 

  25. Liu, X.G., Huang, D.L., Lai, C., Zeng, G.M., Qin, L., Zhang, C., et al.: Recent advances in sensors for tetracycline antibiotics and their applications. Trac-Trend. Anal. Chem. 109, 260–274 (2018)

    Article  Google Scholar 

  26. Kwon, Y.S., Raston, N.H.A., Gu, M.B.: An ultra-sensitive colorimetric detection of tetracyclines using the shortest aptamer with highly enhanced affinity. Chem. Commun. 50(1), 40–42 (2014)

    Article  Google Scholar 

  27. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  Google Scholar 

  28. Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2010)

    Article  Google Scholar 

  29. Sharma, R., Baik, J.H., Perera, C.J., Strano, M.S.: Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano. Lett. 10(2), 398–405 (2010)

    Article  Google Scholar 

  30. He, S.J., Song, B., Li, D., Zhu, C.F., Qi, W.P., Wen, Y.Q., et al.: A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 20(3), 453–459 (2010)

    Article  Google Scholar 

  31. Wu, M., Kempaiah, R., Huang, P.J., Maheshwari, V., Liu, J.W.: Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir 27(6), 2731–2738 (2011)

    Article  Google Scholar 

  32. Barnoy, E., Popovtzer, R., Fixler, D.: Fluorescence for biological logic gates. J. Biophoton. 13(9), e202000158 (2020). https://doi.org/10.1002/jbio.202000158

    Article  Google Scholar 

  33. Wang, Y.F., Zhang, Y.X., Wang, J.J., Liang, X.J.: Aggregation-induced emission (AIE) fluorophores as imaging tools to trace the biological fate of nano-based drug delivery systems. Adv. Drug. Deliver. Rev. 143, 161–176 (2019)

    Article  Google Scholar 

  34. Tian, J., Chu, H., Zhu, L., Xu, W.: Duplex-specific nuclease-resistant triple-helix DNA nanoswitch for single-base differentiation of miRNA in lung cancer cells. Anal. Bioanal. Chem. 412(19), 4477–4482 (2020). https://doi.org/10.1007/s00216-020-02713-6

    Article  Google Scholar 

  35. Idili, A., Vallee-Belisle, A., Ricci, F.: Programmable pH-triggered DNA nanoswitches. J. Am. Chem. Soc. 136(16), 5836–5839 (2014)

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by National Natural Science Foundation of China (no. 61572302), Natural Science Basic Research Plan in Shaanxi Province of China (no. 2020JM-298). The authors are very grateful to the anonymous reviewers for their valuable comments and suggestions for improving the quality of the paper.

Funding

The data used to support the findings of this study are available from the corresponding author upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yafei Dong .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xi, S., Wang, Y., Hu, M., Wang, L., Cheng, M., Dong, Y. (2022). Tetracycline Intelligent Target-Inducing Logic Gate Based on Triple-Stranded DNA Nanoswitch. In: Pan, L., Cui, Z., Cai, J., Li, L. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2021. Communications in Computer and Information Science, vol 1565. Springer, Singapore. https://doi.org/10.1007/978-981-19-1256-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1256-6_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1255-9

  • Online ISBN: 978-981-19-1256-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics