Skip to main content

Solution to Satisfiability Problem Based on Molecular Beacon Microfluidic Chip Computing Model

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1565))

  • 645 Accesses

Abstract

The satisfiability problem is a well-known NPC problem in mathematics. In this paper, we report construction of a computational model based on molecular beacon microfluidic chip, to solve the satisfiability problem by using advantages such as; rapid, simple and economical measurement of molecular beacon probe. Taking 3-satisfiability problem as an example, we encode the variable and construct molecular beacon probe by combining the complement of corresponding DNA strands with variable whose clause is 1. They are then fixed on the chip and placed in the microfluidic chip. It takes DNA strands corresponding to all combinations of values as the initial data pool, and utilize the microfluidic chip to detect. If there are DNA strands in the final data pool, it will be sequenced, and we call that this problem can be satisfied. If there are no DNA strands, the problem is not satisfied. The complexity of the model is \(O\left( m \right) + O(n)\), where \(m\) is the number of clauses in conjunctive normal form, and \(n\) is the number of variables contained in the conjunctive normal form. This model represents great parallelism, massive storage capacity and high throughput, integration and multi-function of microfluidic chips.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hameed, K.: DNA computation based approach for enhanced computing power. Int. J. Emerg. Sci. 1(1), 23–30 (2011)

    Google Scholar 

  2. Kumar, S.N.: A proper approach on DNA based computer. Am. J. Nanomater. 3(1), 1–4 (2015)

    Google Scholar 

  3. Sakakibara, Y., Suyama, A.: Intelligent DNA chips: Logical operation of gene expression profiles on DNA computers. Geneme Inf. 11, 33–42 (2002)

    Google Scholar 

  4. Yin, Z.X., Zhang, F.Y., Xu, J.: 0–1 programming problem based on DNA computing. J. Electron. Inf. Technol. 15(1), 1–5 (2003)

    Google Scholar 

  5. Yang, J., Yin, Z.X., Tang, Z., et al.: Visual solution to minimum spanning tree problem based on DNA origami. Mater. Express 11(10), 1700–1706 (2021)

    Article  Google Scholar 

  6. Yang, X.M., Yang, J., Yin, Z.X., Tang, Z., et al.: DNA tetrahedron walker calculation model for 0–1 integer programming problem. J. Fuyang Normal Univ. (Nat. Sci.) 37(02), 93–98 (2020)

    Google Scholar 

  7. Yang, J., Yin, Z.X., Tang, Z., et al.: DNA computing model for process problem based on hybridization chain reaction. J. Guangzhou Univ. (Nat. Sci. Ed.) 19(1), 14–21 (2020)

    Google Scholar 

  8. Yang, J., Yin, Z.X., Tang, Z., et al.: Search computing model for the knapsack problem based on DNA origami. Mater. Express 9(6), 535–544 (2019)

    Article  Google Scholar 

  9. Whitesides, G.M.: The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)

    Article  Google Scholar 

  10. Chow, A.W.: Lab-on-a-chip: opportunities for chemical engineering. AIChE J. 48(8), 1590–1595 (2002)

    Article  Google Scholar 

  11. Sohila, Z., Francoise, R., Raphael, L.: Microfluidic chip with molecular beacons detects miRNAs in Human CSF to reliably characterize CNS-specific disorders. RNA Dis. 3, 2375–2567 (2016)

    Google Scholar 

  12. Guo, Q., Bai, Z., Liu, Y., et al.: A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms. Biosens. Bioelectron. 77, 107–110 (2016)

    Article  Google Scholar 

  13. Lin, B.C.: Research and industrialization of microfluidic chip. Chin. J. Anal. Chem. 44(4), 491–499 (2016)

    Google Scholar 

  14. Harrison, D.J., Manz, A., Fan, Z., et al.: Capillary electrophoresis and sample injection systems integratedon a planar glass chip. Anal. Chem. 64(17), 1926–1932 (1992)

    Article  Google Scholar 

  15. Thorsen, T., Maerkl, S.J., Quake, S.R.: Microfluidic large-scale integration. Science 298(5593), 580–584 (2002)

    Article  Google Scholar 

  16. Yager, P., Edwards, T., Fu, E., et al.: Microfluidic diagnostic technologies for global public health. Nature 442(7101), 412–418 (2006)

    Article  Google Scholar 

  17. Nge, P.N., Rogers, C.I., Woolley, A.T.: Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 113(4), 2550–2583 (2013)

    Article  Google Scholar 

  18. Amini, H., Lee, W., Di, C.D.: Inertial microfluidic physics. Lab Chip 14(15), 2739–2761 (2014)

    Article  Google Scholar 

  19. Yetisen, A.K., Akram, M.S., Lowe, C.R.: Paper-based microfluidic point-of-care diagnostic devices. Labon a Chip 13(12), 2210–2251 (2013)

    Article  Google Scholar 

  20. Chen, G.: Fabrication and Application of Surface-Enhanced Raman Scattering (SERS) Substrates in Microfluidic Channels. Jilin University, Changchun (2015)

    Google Scholar 

  21. Zhang, C.X.: Research on DNA Biosensor and its Application in Microfluidic Laboratory on a Chip. Beijing Institute of Technology, Beijing (2015)

    Google Scholar 

  22. Liu, Q.H., Wang, L.M., Frutos, A.G., et al.: DNA computing on surfaces. Nature 403(13), 175–179 (2000)

    Article  Google Scholar 

  23. Braich, R.S., Chelyapov, N., Johnson, C., et al.: Solution of a 20 variable 3-SAT problem on a DNA computer. Science 296(5567), 499–502 (2002)

    Article  Google Scholar 

  24. Kristiane, A., Christiaan, V.H., Grzegorz, R., et al.: DNA computing using single-molecule hybridization detection. Nucleic Acids Res. 32(17), 4962–4968 (2004)

    Article  Google Scholar 

  25. Lin, C.H., Cheng, H.P., Yang, C.B., et al.: Solving satisfiability problems using a novel microarray-based DNA compute. Biosystems 90(1), 242–252 (2007)

    Article  Google Scholar 

  26. Yin, Z.X., Cui, J.Z., Liu, W.B., et al.: Plasmid resolving the satisfiability problem with DNA computing models. J. Comput. Theor. Nano-Sci. 4, 1243–1248 (2007)

    Article  Google Scholar 

  27. Brun, Y.: Solving satisfiability in the tile assemblymodelwith a constant-size tileset. J. Algorithms Cogn. Inf. Logic 63(4), 151–166 (2008)

    MATH  Google Scholar 

  28. Chen, M., Chen, X.Q., Zhang, L., Xu, J.: A biobrick inversion cellular computing model for satisfiability problem. Chin. J. Comput. 3(12), 2537–2544 (2014)

    Article  Google Scholar 

  29. Yang, J., Yin, Z.X., Cui, J.Z.: Satisfiability problem based on self-assembly model of molecular beacons. J. Bionanosci. 9(3), 197–202 (2015)

    Article  Google Scholar 

  30. Yin, Z., Yang, J., Zhang, Q., Tang, Z., Wang, G., Zheng, Z.: DNA computing model for satisfiability problem based on hybridization chain reaction. Int. J. Pattern Recogn. Artif. Intell. 35(03), 2159010,1-2159010,16 (2021). https://doi.org/10.1142/S0218001421590102

    Article  Google Scholar 

Download references

Acknowledgements

The project is supported by National Natural Science Foundation of China (No. 61702008, No. 62072296), Natural Science Foundation of Anhui Province (No. 1808085MF193) and Anhui Province postdoctoral fund (No. 2019B331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiang Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, J., Yin, Z., Tang, Z., Cui, J., Liu, C. (2022). Solution to Satisfiability Problem Based on Molecular Beacon Microfluidic Chip Computing Model. In: Pan, L., Cui, Z., Cai, J., Li, L. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2021. Communications in Computer and Information Science, vol 1565. Springer, Singapore. https://doi.org/10.1007/978-981-19-1256-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1256-6_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1255-9

  • Online ISBN: 978-981-19-1256-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics