
Structural Design Recommendations in the Early Design
Phase using Machine Learning

Spyridon Ampanavos1*, Mehdi Nourbakhsh2, Chin-Yi Cheng2

1 Harvard Graduate School of Design, Cambridge MA 02138, USA
2 Autodesk Research, San Francisco CA 94105, USA

sampanavos@gsd.harvard.edu, mehdi.nourbakhsh@autodesk.com,
chin-yi.cheng@autodesk.com

Abstract. Structural engineering knowledge can be of significant importance to
the architectural design team during the early design phase. However, architects
and engineers do not typically work together during the conceptual phase; in fact,
structural engineers are often called late into the process. As a result, updates in
the design are more difficult and time-consuming to complete. At the same time,
there is a lost opportunity for better design exploration guided by structural feed-
back. In general, the earlier in the design process the iteration happens, the greater
the benefits in cost efficiency and informed design exploration, which can lead
to higher quality creative results.
In order to facilitate an informed exploration in the early design stage, we suggest
the automation of fundamental structural engineering tasks and introduce Ap-
proxiFramer, a Machine Learning-based system for the automatic generation of
structural layouts from building plan sketches in real-time. The system aims to
assist architects by presenting them with feasible structural solutions during the
conceptual phase so that they proceed with their design with adequate knowledge
of its structural implications.
In this paper, we describe the system and evaluate the performance of a proof-of-
concept implementation in the domain of orthogonal, metal, rigid structures. We
trained a Convolutional Neural Net to iteratively generate structural design solu-
tions for sketch-level building plans using a synthetic dataset and achieved an
average error of 2.2% in the predicted positions of the columns.

Keywords: Machine learning, Structure Approximation, Convolutional Neural
Net, Design Assistance.

1 Introduction

Structure is a fundamental element of a building design. When the structural design is
developed in parallel and in coordination with the architectural design, it can inform an
architect's decisions and lead to a harmonious integration of the two. However, when
structure is not taken into account during the early phase of design, reconciling archi-
tectural and structural design can be a cause of delays, conflicts between architects and
engineers, and undesirable design compromises.

2

A study investigating the collaboration between architects and structural engineers
conducted in New Zealand in 2009 found that among the primary points of friction are
the limited understanding of structural engineering from the side of architects and the
late involvement of structural engineers in the project [1].On the other hand, it has been
repeatedly argued that the cost of design changes increases the later they are introduced
in the process [2, 3]. The term 'cost' is not limited to monetary expenses but can be
generalized to the ability of a change to impact the design [4].

Parametric modeling and BIM software have been used by practitioners and re-
searchers to address such collaboration conflicts [4], and specialized software has been
used in research and educational settings to facilitate and promote a better understand-
ing between architects and structural engineers [5]. While such solutions have signifi-
cantly benefited the field, they do not specifically address the conceptual stage of the
design.

The conceptual stage of design is commonly described as a divergent process. It is
characterized by quick iteration, and often happens outside of a CAD environment, in
the form of sketching. In order to achieve a smoother integration of architectural and
structural design, structural feedback should be easily available during the conceptual
stage. Such feedback cannot and does not need to be precise, as the design itself in this
phase lacks precision. In contrast, approximate and directional feedback can be useful
for improving a design towards a better solution with respect to its structure.

In this paper, we introduce ApproxiFramer, an automated system with the ability to
generate structural design recommendations during the conceptual phase of architec-
tural design. The goal of such recommendations, indicating potential/optimal structural
solutions, is to inform the architects' design decisions and ultimately reduce conflicts
with the structural engineers when they get involved in the project at a later stage.

A tool targeting the conceptual design phase has to respond to two main challenges.
First, the feedback needs to be generated in real-time. Second, the tool should be able
to directly handle conceptual sketches without requiring the user to translate them into
different software. Recent advances in the field of Machine Learning (ML) have
demonstrated an increasing ability to handle irregular types of input data, such as im-
ages or sketches. In addition, ML methods have been previously used to successfully
accelerate structural design tasks [6–9]. ApproxiFramer employs a machine learning
model to tackle both the speed and the integration challenges.

In this paper, we develop and evaluate ApproxiFramer by focusing on a specific
structural domain, rigid metal structures. We trained a neural net on a synthetic dataset
consisting of sketch-level single floor building plans and their corresponding structural
layouts. The neural net generated structural layouts in real-time while achieving an av-
erage percentage error of 2.21% in the positions of the structural elements of the test
set, confirming the potential of the method for early phase design assistance.

We make two contributions in the area of early-phase design decision support. First,
we introduce a method for generating approximate structural solutions for architectural
sketches in real-time. Second, we report on the results of an experiment and demon-
strate that a machine learning-based system can successfully learn to generalize a con-
sistent set of structural principles.

3

2 Related Work

Some previous work seeking to assist architects in designing buildings that better con-
form to various performance criteria has employed various forms of optimization [10].
Such works that focus on the early design phase typically combine procedural modeling
and simulation software, with the parameters of the generative model being tuned
through an optimization algorithm [11, 12]. Shea et al. elaborate on how parametric
modeling and engineering performance feedback can be used to improve architectural
designs [13]. Optimization is not necessarily the end goal of these processes but rather
a tool to automatically construct solutions that can guide the architect towards design
improvements [14, 15]. Other work has focused on integrating designers' preferences
through interactive optimization [16, 17]. More recently, Hamidavi et al. proposed a
system that uses multiple types of structural optimization and BIM modeling to improve
the collaboration of architects and structural engineers [18]. However, setting up a good
procedural model for an optimization process is non-trivial, and an optimization frame-
work to guide this process has been suggested as well [19].

In practice, optimization and the performance simulations that it relies on are often
too time-consuming to be employed in the early design phase. The use of surrogate
models has been suggested as a way to accelerate simulations [20]. Tseranidis et al.
provide an overview of multiple ML algorithms for the approximation of structural en-
gineering calculations [21]. While most surrogate models are trained to only work with
specific parametric models and structural topologies, some research has addressed gen-
eralizable models that work with multiple topologies of 3d trusses [9].

Other work has used machine learning to directly approximate optimal solutions.
Support Vector Machines have been trained to optimally solve individual modules of a
space frame [6], Bayesian nets have been used for bi-directional inference with the goal
of identifying the most promising areas of a design space with respect to structural
performance [22], and neural nets have been used to predict optimal parameters de-
scribing the bracing of a metal frame [8].

In contrast to previous research that has targeted design using parametric models of
the geometry, we are proposing a method for structural design approximation that di-
rectly uses sketch-level plans. The goal is to provide real-time guidance in the early
design exploration during the actual sketching before an idea is formalized into a CAD
drawing.

3 Method

3.1 Approach

ApproxiFramer aims to inform the early phase design exploration in a sketch-based
environment through the real-time generation of structural designs. Figure 1 describes
how ApproxiFramer can be integrated into such an environment. A user-generated
sketch first passes through a pre-processing step that converts a noisy and imprecise
input to a clean drawing so that it can be used with our predictive system. This kind of

4

processing is common in commercial design graphics software, so this research con-
siders it given, and further technical elaboration is out of scope.

Consequently, we propose the use of a neural net to solve the problem of real-time
structural layout predictions from building plans. Inspired by previous work that sug-
gests the decomposition of structural problems into sub-problems that are easier and
more generalizable [8, 23], we do not attempt to estimate the complete structure at once.
Instead, we use an iterative approach, only locally solving the problem and predicting
a partial structure, gradually extending the solution until no more extensions are neces-
sary. We expect that the neural net will have more chances of identifying patterns when
focusing on a small area of the given building at each step, even if every observed
building is unique. In order to evaluate and further develop the proposed method, we
conducted an experiment where the scope of the problem has been limited, as described
in the next section.

Fig. 1. Sketch-based interaction and structural predictions. The user designs a sketch of a plan

(a.), the system converts the noisy sketch to a clean drawing (b.) and passes it to Approxi-
Framer that predicts the placement of the structural elements (c.). The structural solution is su-

perimposed on the user's initial sketch (d.).

3.2 Problem Scope

In general, the design of a structure is informed by a series of specifications and con-
straints. The type of structural system, materials, available structural members, regula-
tion, and others will all affect the solution of the design, so that the same building design
may lead to very different structural designs based on these parameters. The current
experiment operates in a constrained space where these parameters are assumed to have
fixed values.

In this paper, we focus on rigid metal frames, always connected at right angles. No
bracing is typically required for such structures. Selection of the appropriate cross-sec-
tions and sizing of the structural elements are outside of the scope of this study and are
typically of minor importance during the conceptual design phase. As such, the struc-
tures that we design can be easily abstracted to a diagrammatic level. A set of coordi-
nates that indicate the locations of the columns is then a sufficient description of such
a frame.

5

The developed system generates structural layouts for orthogonal, sketch-level, sin-
gle-floor plans. These plans include exterior and interior walls of the building, both
represented by single straight lines that are either horizontal or vertical.

3.3 System Architecture

The input of the system is in image format, providing significant flexibility to the
user in the selection of design software or medium. In the core of the system lies a
convolutional neural net (CNN) that we trained to take an image of a sketch, represent-
ing a plan of a building layout, and predict the position of a group of columns. In each
iteration, the newly predicted columns are added to the solution, and a new image is
rendered that contains both the initial sketch and the columns that have been placed so
far. This newly rendered image is then used as the input of the next iteration. Algorithm
1 describes this iterative process.

Fig. 2. Representative examples of iterative predictions for a smaller structure in four steps

(top) and a larger structure in seven steps (bottom).

Each iteration solves a local sub-problem, scanning the building from left to right
and from top to bottom, and adding a fixed number1 of columns to the solution. The

1 The last iteration will add any number of columns between 0 and that fixed number, as needed.

6

columns are assumed in a specific order as well: left to right and top to bottom. The
model was trained to output a zero vector when there are no more columns to be placed.

Algorithm 1. Predicting positions of all columns.

Image ß initialSketch
Columns ß []
repeat
 column ß predictNextColumn(image)
 columns.append(column)
 image ß addColumnToImage(image, column)
until allColumnsHaveBeenPlaced(image, columns)
return image, columns

The number of columns for each iteration was defined as n=4, based on initial results
after considering alternatives between 1 and 8. Figure 2 demonstrates two examples of
structures being predicted in 4 and 7 iterations.

The CNN takes as input an image of 128 X 128 pixels with four channels. Two
channels contain the building layout and the already placed columns, and two contain
the pixel coordinates, as suggested in [24]. The image passes through three convolu-
tional layers with kernel sizes 7, 3, 3 and strides 2, 2, 2 and a ResNet block [25], fol-
lowed by two fully connected layers, an LSTM layer [26], and two output layers which
are also fully connected. The first output layer (4X2) contains the coordinates of the
four predicted columns. The second output layer (4X3) contains the type classification
for each of the predicted columns. The possible types are free-standing, column on cor-
ner, or column on wall. All layers use ReLu activation functions, except for the ResNet
and the output layers. The ResNet uses linear activations and is followed by batch nor-
malization and leaky ReLu. The coordinates output layer uses sigmoid activation since
the coordinates are normalized in the range [-1, 1], and the type output layer uses soft-
max to convert the output to class probabilities. The number of filters is shown in Figure
3, which depicts the structure of the neural net in detail.

Fig. 3. CNN Architecture.

7

3.4 Dataset

An appropriate dataset can be sourced from historical or synthetic data. In general, we
expect that given a number of buildings and their corresponding structures that follow
a specific set of principles, we can train a CNN to abstract these principles and itera-
tively generate similar structures for more buildings of the same type. In this work, we
generated a synthetic dataset of buildings on an orthogonal grid. The structural layouts
were generated using heuristics. While this is not the ideal scenario to demonstrate the
power of our system, our focus here is to demonstrate the ability of the system to ap-
proximate a set of structural designs, which is expected to generalize to other, more
sophisticated datasets as well.

We created 35 building layouts, each building including both exterior and interior
walls. This initial set of buildings was augmented through 90-degree rotations, scaling,
and translations. For each building, we designed a structural layout using the same heu-
ristics: fitting a grid of columns with a predefined maximum span. The resulting dataset
contains 10,000 pairs of buildings and structural layouts. Out of these, we used 9,000
for training and validation, and 1,000 for testing. In order to use the training data with
the system's iterative approach, we generated the set of all possible configurations of
incremental structural designs for each of the buildings. In the incremental structural
designs, we determine the next partial solution - i.e., the next group of columns to be
placed - by ordering the columns by x and y. After this process, we ended up with
137,644 training samples and 12,514 testing samples.

3.5 Training

In order to obtain a complete structural solution for a design layout, we need to run the
model in an iterative way, in each step adding to the observed image the predicted col-
umns of the previous step. However, there are a few challenges in practice. Each time
that a column is predicted, the location contains a small error (i.e., the alignment may
be one or more pixels off). When this column is added to the input image of the next
step, it contributes to a larger error in the next prediction. Eventually, the error accu-
mulates until the model is unable to predict the next column locations in a sensible way.

We used two methods to overcome the problem of the accumulated error. First, we
created a new dataset with added noise in the locations of the rendered columns. Adding
noise is a technique that has been used with neural nets for data augmentation [27] in
order to improve generalization and avoid overfitting. Similarly, by training our model
on noisy inputs, we aim to make it robust to inaccuracies during iterative prediction.

Second, we worked towards increasing the output size of each step and, by doing so,
reducing the number of iterations that are needed to complete a structural layout. Using
an earlier, simpler model, we found that simply increasing the size of the output de-
creased the performance dramatically when no other major changes were made. How-
ever, we were able to get good results when we introduced a residual block and an
LSTM layer in the model.

The loss function was defined as the weighted sum of the mean absolute error of the
coordinates output layer and the categorical cross-entropy of the column type output

8

layer, with weights 1.0 and 0.2. The network was trained using stochastic gradient de-
scent for 900 epochs.

4 Results

On a single run, the CNN model is outputting predictions for four columns. The output
includes the column coordinates and the column type (between free-standing, column
on corner, or column on wall) (Figure 3). While we found that training using a weighted
loss on a combination of the column coordinates and the column types improved the
model performance compared to training on column coordinates prediction alone, the
column type information is not used during inference, and therefore it is also excluded
from the following results.

4.1 Single predictions on perfect observations – CNN evaluation

First, we evaluate the model performance on single predictions (i.e., four columns). We
use as input all possible partially completed structures from the test set, with a four
columns step, and following the ordering by x and y coordinates. The partial completion
is done based on the ground truth so that the model is predicting based on a perfect
observation.

The model successfully identified when to stop adding new columns 100% of the
time. During training, we used a zero vector to indicate the stopping point of the pre-
dictions. During inference, we modified the threshold to be a vector where at least one
of the x or y coordinates has a value less than 2.

Our CNN achieved an average error of 2.21% in the predicted column positions.
This error corresponds to a mean distance of 1.51 pixels between the predicted column
locations and the ground truth for our dataset images of 128 X 128 pixels. Figure 4 Left
shows the mean distance between predictions and ground truth in relation to the order-
ing of the columns. We do not observe a significant change in performance as the size
of the observed, partially completed structures increases. However, we notice that
within each four columns (or column quads) coming from a single prediction, earlier
columns tend to have smaller error. This is better captured in Figure 4 Right, where
columns have been put in four groups based on their order of appearance within a single
prediction. The mean absolute error increases from 1.46 pixels for the first columns of
each prediction to 2.14 pixels for the fourth columns. This behavior is attributed to the
use of the LSTM layer, which introduces a recurrent architecture in the model. Each
column of a single prediction depends on the previously estimated columns of the same
prediction, and as a result, the error accumulates.

9

Fig. 4. Left Top: Mean error for first 24 columns. Left Bottom: Mean error for first six predic-
tion steps, where one prediction step outputs four columns (or one “column quad”). Predictions
on clean observations. Right Top: Mean absolute error of first six quad predictions, grouped by

order inside quad – the first group is first columns of 6 quad predictions, the second group is
second columns, etc. Right Bottom: Mean absolute error of same order columns. Predictions on

clean observations.

4.2 Iterative Predictions – System Evaluation

Next, we evaluate the system performance on the goal task, which is to estimate all
columns for each building. This is accomplished by using our CNN in an iterative way,
where each step relies on the output of the previous prediction.

The system predicted the correct number of columns 95.3% of the time. Out of the
1000 buildings of the test set, 47 were solved with fewer or with more columns than
the ground truth. These buildings have been removed from the report of the rest of the
metrics described below.

The system achieved an average error of 2.21% in the predicted column positions.
The mean distance of the predictions from the ground truth among all iterations was
1.84 pixels. Figure 5 shows in green the mean distance of the predictions from the
ground truth in relation to the ordering of the columns. We observe that the error in-
creases for inputs with more columns in the already completed structure. In the previous
subsection 4.1, we found that the size of the completed structure only has a minimal
effect on the CNN performance. Therefore, we attribute this error increase to the accu-
mulated error from the previously predicted columns that are used in the input of the
new predictions.

10

Fig. 5. Top: Mean absolute error for first 24 columns. Bottom: Mean absolute error for the first

six prediction quads.

5 Discussion

5.1 ML as an Approximation Means for Early Phase Structural Assistance

Our model performs very well on single predictions, maintaining a very low average
error (2.21%) and producing results that are visually coherent. The system also main-
tains a low average error on iterative predictions (2.21%). In practice, it predicts all
column positions well on a large subset of the test set and only fails to output reasonable
results while iterating on some building designs. This happens as the model remains
susceptible to noisy observations of previous predictions. Currently, the performance
tends to decrease both with repeated iterations (Figure 4 Left and Figure 5), as well as
with later outputs of a single run (Figure 4 Right). Further investigation is needed on
the potential of the two approaches and the optimal combination of them.

The results suggest that the proposed method, which relies on machine learning tech-
niques, constitutes a promising approach for the automatic suggestion of structural de-
signs for early phase architectural sketches or drawings. Once a trained model is loaded,
our system only needs a few milliseconds to generate such a structure. Therefore, we
believe that a system like ApproxiFramer can provide valuable design assistance during
the conceptual design phase.

Furthermore, ApproxiFramer could be combined with other ML methods that pro-
pose optimal cross sections of columns and beams [28], based on structural skeletons
similar to the ones that our system generates. It can also be used as a complementary
tool to parametrization and optimization methods such as the one introduced in
SketchOpt [29], providing early, quick estimates before a structural optimization is run.

11

5.2 Iterative approach vs. end-to-end model

The ApproxiFramer system relies on the iterative use of a neural net to predict a
complete structure. Early experimentation results, as well as the increasing error be-
tween the first and last predictions of a single model inference (Figure 4 Right Bottom),
suggest that the current model architecture is not appropriate for the end-to-end predic-
tion of complete structures.

Apart from performance considerations, we believe that the iterative approach has
other advantages, too, over a whole-structure prediction. The model's ability to com-
plete partial structures could be potentially leveraged to interactively guide the design
of structure as well as space, following the design paradigm of interactive optimization
[17]. Combined with a different sub-problem parsing strategy in the future, e.g., one
where subsequent iterations have increased level-of-detail, this would allow the de-
signer to lead the system towards a specific direction, for example, by modifying the
outputs of the initial steps of the structure prediction.

5.3 Generalizability

In this paper, we demonstrated the feasibility of the suggested method in the domain of
rigid metal frames connected at right angles. Functioning inside this domain, we were
able to simplify a structural design to a set of columns, assuming that beams can be
added in a post-processing step using simple heuristics. Even though we considered
single-floor plans, the method is easily generalizable to low-rise buildings with a typical
plan repeated in all floors above the ground. We expect that our method is also gener-
alizable to different structural systems. However, appropriate modifications will have
to be made to accommodate the potential use of multiple types of structural elements
in more complex domains. For instance, we have already demonstrated the prediction
of labels associated with each column, and it is not difficult to imagine how such labels
could be used as classes of multiple types of structural elements.

The dataset used in this work contains orthogonal designs with heuristically gener-
ated structures; however, we expect the proposed method to be generalizable to differ-
ent datasets and human-generated or computationally optimized structures.

5.4 Limitations

The results indicate that the column positioning tends to be noisy, something that may
be easier noticeable for columns that should be placed on wall intersections. This is not
necessarily an issue in the specific context of early phase sketching since the user's
sketches are expected to be similarly rough, and precision is not the goal at this stage.
Nevertheless, a post-processing step might be able to fine-tune the positions at a local
level.

Last, larger structures are currently more difficult to solve, mainly because of the
accumulated error. A larger dataset and different data augmentation techniques are ex-
pected to improve this performance.

12

6 Conclusion

We introduced a method for early phase design assistance with respect to structure,
with the goal of promoting more informed design decisions early on and better prepar-
ing architects for later stage collaboration with structural engineers. We described a
system that can predict structural layouts of single-story building designs from dia-
grammatic sketches and trained a CNN that performs this task in an iterative way. While
we achieved satisfactory performance on our test set, our model only consists a first
step to applying this approach to the real world. Further improvements are required in
terms of robustness and the ability to take into account structural constraints and pa-
rameters.

Future work may explore how to interactively address architectural aspects of the
structure by adding the designer in the loop between prediction iterations. Alternative
ways of parsing the overall problem into smaller sub-problems may also be investigated
in relation to different structural systems. The addition of a fine-tuning step can be in-
vestigated as a way to reduce the impact of small inaccuracies in the positions of pre-
viously placed columns. Finally, the use of a synthetic dataset generated through opti-
mization or a dataset from historical data - i.e., from a structural engineering practice -
will be a significant step towards deploying such a system in the real world.

Acknowledgements. We would like to express our gratitude to Mohammad

Keshavarzi for his help with the synthetic data preparation process.

References

1. Charleson, A.W., Pirie, S.: An Investigation Of Structural Engineer-Architect Collabora-
tion. SESOC. 22, 97–104 (2009).

2. Collaboration, Integrated Information and the Project Lifecycle in Building Design, Con-
struction and Operation. Construction Users Roundtable (2004).

3. Paulson Jr, B.C.: Designing to reduce construction costs. Journal of the Construction Divi-
sion. 102, 587–592 (1976).

4. Davis, D.: Modelled on software engineering: flexible parametric models in the practice of
architecture, https://researchbank.rmit.edu.au/view/rmit:161769, (2013).

5. Charleson, A.W., Wood, P.: Enhancing collaboration between architects and structural en-
gineers using preliminary design software. Presented at the 2014 NZSSE Conference
(2014).

6. Hanna, S.: Inductive machine learning of optimal modular structures: Estimating solutions
using support vector machines. AI EDAM. 21, 351–366 (2007).
https://doi.org/10.1017/S0890060407000327.

7. Zheng, H., Moosavi, V., Akbarzadeh, M.: Machine learning assisted evaluations in struc-
tural design and construction. Automation in Construction. 119, 103346 (2020).
https://doi.org/10.1016/j.autcon.2020.103346.

8. Aksöz, Z., Preisinger, C.: An Interactive Structural Optimization of Space Frame Structures
Using Machine Learning. In: Gengnagel, C., Baverel, O., Burry, J., Ramsgaard Thomsen,

13

M., and Weinzierl, S. (eds.) Impact: Design With All Senses. pp. 18–31. Springer Interna-
tional Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-29829-6_2.

9. Nourbakhsh, M., Irizarry, J., Haymaker, J.: Generalizable surrogate model features to ap-
proximate stress in 3D trusses. Engineering Applications of Artificial Intelligence. 71, 15–
27 (2018). https://doi.org/10.1016/j.engappai.2018.01.006.

10. Evins, R.: A review of computational optimisation methods applied to sustainable building
design. Renewable and Sustainable Energy Reviews. 22, 230–245 (2013).
https://doi.org/10.1016/j.rser.2013.02.004.

11. Keough, I., Benjamin, D.: Multi-objective optimization in architectural design. In: Proceed-
ings of the 2010 Spring Simulation Multiconference. pp. 1–8. Society for Computer Simu-
lation International, San Diego, CA, USA (2010).
https://doi.org/10.1145/1878537.1878736.

12. Lin, S.-H.E., Gerber, D.J.: Designing-in performance: A framework for evolutionary energy
performance feedback in early stage design. Automation in Construction. 38, 59–73 (2014).
https://doi.org/10.1016/j.autcon.2013.10.007.

13. Shea, K., Aish, R., Gourtovaia, M.: Towards integrated performance-driven generative de-
sign tools. Automation in Construction. 14, 253–264 (2005).
https://doi.org/10.1016/j.autcon.2004.07.002.

14. Caldas, L.: An evolution-based generative design system : using adaptation to shape archi-
tectural form, http://dspace.mit.edu/handle/1721.1/8188, (2001).

15. Bradner, E., Iorio, F., Davis, M.: Parameters tell the design story: ideation and abstraction
in design optimization. In: 2014 Proceedings of the Symposium on Simulation for Archi-
tecture and Urban Design. p. 26. Society for Computer Simulation International, Tampa,
FL, USA (2014).

16. Turrin, M., von Buelow, P., Stouffs, R.: Design explorations of performance driven geom-
etry in architectural design using parametric modeling and genetic algorithms. Advanced
Engineering Informatics. 25, 656–675 (2011). https://doi.org/10.1016/j.aei.2011.07.009.

17. Mueller, C.T., Ochsendorf, J.A.: Combining structural performance and designer prefer-
ences in evolutionary design space exploration. Automation in Construction. 52, 70–82
(2015). https://doi.org/10.1016/j.autcon.2015.02.011.

18. Hamidavi, T., Abrishami, S., Hosseini, M.R.: Towards intelligent structural design of build-
ings: A BIM-based solution. Journal of Building Engineering. 32, 101685 (2020).
https://doi.org/10.1016/j.jobe.2020.101685.

19. Yang, D., Ren, S., Turrin, M., Sariyildiz, S., Sun, Y.: Multi-disciplinary and multi-objective
optimization problem re-formulation in computational design exploration: A case of con-
ceptual sports building design. Automation in Construction. 92, 242–269 (2018).
https://doi.org/10.1016/j.autcon.2018.03.023.

20. Wang, G.G., Shan, S.: Review of Metamodeling Techniques in Support of Engineering De-
sign Optimization. J. Mech. Des. 129, 370–380 (2007). https://doi.org/10.1115/1.2429697.

21. Tseranidis, S., Brown, N.C., Mueller, C.T.: Data-driven approximation algorithms for rapid
performance evaluation and optimization of civil structures. Automation in Construction.
72, 279–293 (2016). https://doi.org/10.1016/j.autcon.2016.02.002.

22. Conti, Z.X., Kaijima, S.: Enabling Inference in Performance-Driven Design Exploration.
In: De Rycke, K., Gengnagel, C., Baverel, O., Burry, J., Mueller, C.T., Nguyen, M.M.,

14

Rahm, P., and Thomsen, M.R. (eds.) Humanizing Digital Reality: Design Modelling Sym-
posium Paris 2017. pp. 177–188. Springer Singapore, Singapore (2018).
https://doi.org/10.1007/978-981-10-6611-5_16.

23. Hajela, P., Berke, L.: Neural network based decomposition in optimal structural synthesis.
Computing Systems in Engineering. 2, 473–481 (1991). https://doi.org/10.1016/0956-
0521(91)90050-F.

24. Liu, R., Lehman, J., Molino, P., Such, F.P., Frank, E., Sergeev, A., Yosinski, J.: An Intri-
guing Failing of Convolutional Neural Networks and the CoordConv Solution.
arXiv:1807.03247 [cs, stat]. (2018).

25. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. Pre-
sented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (2016).

26. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Comput. 9, 1735–1780
(1997). https://doi.org/10.1162/neco.1997.9.8.1735.

27. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press, Cambridge, Mas-
sachusetts (2016).

28. Chang, K.-H., Cheng, C.-Y.: Learning to Simulate and Design for Structural Engineering.
In: International Conference on Machine Learning. pp. 1426–1436. PMLR (2020).

29. Keshavarzi, M., Hotson, C., Cheng, C.-Y., Nourbakhsh, M., Bergin, M., Rahmani Asl, M.:
SketchOpt: Sketch-based Parametric Model Retrieval for Generative Design. In: Extended
Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems. pp. 1–6.
Association for Computing Machinery, New York, NY, USA (2021).
https://doi.org/10.1145/3411763.3451620.

