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Abstract. Current performance-driven building design methods are not widely 
adopted outside the research field for several reasons that make them difficult to 
integrate into a typical design process. In the early design phase, in particular, the 
time intensity and the cognitive load associated with optimization and form par-
ametrization are incompatible with design exploration, which requires quick it-
eration. This research introduces a novel method for performance-driven geom-
etry generation that can afford interaction directly in the 3d modeling environ-
ment, eliminating the need for explicit parametrization, and is multiple orders 
faster than the equivalent form optimization. The method uses Machine Learning 
techniques to train a generative model offline. The generative model learns a dis-
tribution of optimal performing geometries and their simulation contexts based 
on a dataset that addresses the performance(s) of interest. By navigating the gen-
erative model’s latent space, geometries with the desired characteristics can be 
quickly generated. A case study is presented, demonstrating the generation of a 
synthetic dataset and the use of a Variational Autoencoder (VAE) as a generative 
model for geometries with optimal solar gain. The results show that the VAE-
generated geometries perform on average at least as well as the optimized ones, 
suggesting that the introduced method shows a feasible path towards more intui-
tive and interactive early-phase performance-driven design assistance. 
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1 Introduction 

During the design process, an architect strives to reconcile several qualitative and quan-
titative objectives. Performance-driven design aims to assist in meeting the quantifiable 
objectives related to a building’s performance, most commonly through the use of op-
timization. To maximize its impact, the performance-driven design methodology needs 
to be applied from the early design phase1. Contrary to its original purpose as a precise 

 
1  Paulson and MacLeamy have both elaborated on the impact of changes along the different 

phases of design [1, 2]. Similarly, Morbitzer argues that simulation should be used throughout 
the design process [3]. 
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problem-solving tool, optimization is increasingly gaining traction as an exploratory 
tool in the early design phase[4–10]. However, outside of the research field, the use of 
optimization in the early design phase has been limited for reasons that relate to: i) time 
intensity, ii) interpretability, iii) inherent limitations of the required parametric models, 
and iv) the elusive nature of performance goals in architectural design. 

Time Intensity. One major limitation for applying optimization in architecture is the 
time intensity of the processes involved [11, 6, 12–14]. Environmental or structural 
simulations can be computationally expensive. Combined with an optimization process 
that employs a stochastic search method, such as evolutionary algorithms, the calcula-
tion time increases by multiple orders of magnitude. In the early design phase, where it 
is essential to consider multiple design alternatives quickly, the slow speed of optimi-
zation disrupts the exploratory process. 

Interpretability. When it comes to interpreting multi-objective optimization results, 
architects can have difficulties in understanding the solution space [15, 16]. Optimiza-
tion returns a set of high-performing solutions with their corresponding performances; 
however, the connection between design parameters and performance tradeoffs is not 
always apparent [16], offering little intuition to the designer. 

Limitations of Parametric Models. Parametric models are widely adopted in archi-
tecture; however, their applicability in the early design phase has been questioned [4, 
17–19]. Davis offers an extensive analysis of how parametric models have certain limits 
on the changes they can afford before breaking [20]. To accommodate a major change, 
such as those that often happen during the conceptual phase, the parametric model 
would need to be replaced by a new one [9, 21, 22]. However, optimization operates on 
a pre-determined parametric model, and as a result, it conflicts with the nature of the 
conceptual design stage. 

Nature of Performance Goals in Design. Carrara et al. describes the design process 
as consisting of three operations [23]: i) definition of the desired set of performance 
criteria, ii) production of design solutions, and iii) evaluation of expected performance. 
However, they stress that these operations relate in a non-linear way and coevolve dur-
ing the design process. Others have also discussed the co-evolution of the problem def-
inition and solution in the design process [11, 12, 16, 18, 24, 25]. Therefore, it is ex-
pected that the performance goals, parameters, and constraints will be redefined multi-
ple times during the design process.  

Consequently, as long as optimization requires from the designer a high investment 
in terms of time and cognitive effort to create the parametric abstractions and interpret 
the results, it cannot seamlessly integrate into the early design phase.  

This research suggests an alternative method of providing early-phase performance-
driven design assistance for optimally performing geometries in real-time and without 
the need for parametrization. The method makes use of Machine Learning (ML) gen-
erative models. It relies on the navigation of a latent space where the results of a series 
of optimization processes have been encoded in advance.  

This paper describes the suggested method and presents a case study where a Vari-
ational Auto-Encoder (VAE) is introduced for the generation of geometries with opti-
mal solar gain properties and pre-determined size. The results show that the VAE was 



3 

able to generate geometries with optimal or close-to-optimal performance for most sim-
ulation contexts from the test set, in a fraction of the corresponding optimization time. 

This work makes the following contributions to the area of computational design. A 
novel method for real-time early-phase performance-driven design assistance is intro-
duced, which does not require parametric models. The use of generative models is sug-
gested for the novel task of generating geometries with optimal performance properties. 
Empirical evidence is provided, suggesting that a VAE can be used as a generative 
model for optimally performing geometries. 

2 Related Work 

2.1 Performance-Driven Design 

Simulation. Simulations form the basis of performance-driven design. However, a sin-
gle or a limited number of simulations is not enough to guide design improvements. 
Systematic simulations [26] attempted to address this subject, but the complex relation-
ship between performance and parameters related to form, together with the time inten-
sity of the calculations, make this an impractical solution. Some template-based tools 
attempted to give a solution by enabling quick evaluation of alternatives [3, 27, 28], 
however, they imposed severe restrictions to the range of supported forms and thus 
were not adopted by the architectural community. Finally, real-time simulations were 
found to be helpful during the performance-driven form-finding process [29], however, 
in cases with large design spaces and multiple performance criteria, further guidance is 
necessary [30]. 

Sensitivity Analysis. Sensitivity analysis methods can be used to guide exploration 
based on a single parametric model [31, 32] or to evaluate multiple alternative para-
metric models [33–35]. However, it has been argued that they do not provide adequate 
information to lead to optimally performing solutions [13, 36]. 

Optimization. Optimization processes identify the parameters of a model that result in 
optimally performing solutions. They have successfully solved engineering or building 
science problems [5, 6, 37]. However, despite extensive research on optimization for 
performance-driven design, such methods have not been widely adopted in the archi-
tecture practice [5, 6].  

Form Exploration. In order to reconcile the engineering nature of optimization with 
the more exploratory role that designers tend to give to it [4], some research has sug-
gested interactive optimization [8, 9] for integrating performance with designer prefer-
ences. Other work has focused on simulation speed, interactivity, and results visualiza-
tion [16] through the use of surrogate modeling. Last, some recent work has suggested 
eliminating the parametric modeling overhead by deploying automatic parametrization 
and data analysis [17]. 
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2.2 Generative Models 

Definition. A generative model is a type of ML model that can learn an estimate of a 
distribution by observing a set of examples from that distribution, i.e., a training set  
[38]. Once fully trained, sampling a generative model approximates sampling from the 
original data distribution. For example, a generative model trained on a dataset of faces 
will generate new faces when sampled2. 

Latent Space. Some generative models work by learning a mapping of the original 
data to a lower-dimensional space, called the latent space. For example, the Variational 
Auto-Encoder [41] (VAE) explicitly learns an encoder and a decoder function that maps 
the original data to and from a latent space. Naturally, similar data points will be located 
close in the latent space. This characteristic allows for smooth interpolation of data 
samples by traversing the latent space or even for the composition of new data with 
specified properties through latent space vector arithmetic, as demonstrated by Wu et 
al. in the domain of three-dimensional objects [42]. 

Applications. In the field of architecture, several attempts have been made to use gen-
erative models in the creative phase [43–46]. Most such works used Generative Adver-
sarial Networks [47] (GANs), motivated by some impressive results in the field of com-
puter vision [39, 47–49]. However, the subject of performance has not been previously 
addressed directly in research related to generative models. 

3 Approach 

Current practices and previous research reveal a lack of support for performance-driven 
design in the early form-finding process. Almost all related research approaches per-
formance-driven design through the scope of parametric modeling, which imposes se-
vere restrictions of time-intensity, cognitive load, and premature commitment to spe-
cific graph topologies[19, 22] to the creative process. 

This research suggests that optimal form-finding can be achieved by navigating the 
latent space of a generative model. A generative model that addresses a specific set of 
performance metrics can be trained on a dataset where each data point represents both 
the problem definition and an optimal solution to the problem. When the trained model 
is sampled, it will generate a new problem definition and an optimal solution following 
the learned data distribution. In order to generate an optimal solution to a specific prob-
lem definition, a sample can be retrieved from the model, constrained by the problem 
definition of interest. In practice, this can be achieved through search or navigation of 
the model’s latent space. In addition to generating optimal geometric forms from 
scratch, the same generative model can also be used to suggest optimally performing 
alternatives that are as close as possible to user-generated forms. For this task, the user-
generated geometry becomes part of the constraints that drive the latent space search. 

 
2  See for example the Progressive GAN model [39] trained on the CelebA dataset [40]. 
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The proposed method addresses the current limitation of time intensity associated 
with performance-driven design. In addition, the ability of ML methods to deal with 
high dimensional data is used to work directly with geometries from the modeling en-
vironment, eliminating the need for geometry parametrization. Last, the method opens 
up the potential for intuitive, real-time interactivity in a user-guided search for optimal 
geometries. 

The dataset required to train such a model needs to include a diverse set of optimally 
performing geometries for a wide range of problem definitions. Such datasets do not 
exist at the moment and are impossible to collect from the real world, so synthetic da-
tasets with the desired characteristics should be created using existing optimization 
methods. Since a specific model only addresses a pre-determined set of performance 
metrics, the term “problem definition” refers to the simulation context that drives the 
optimization process. 

Next, a case study is presented, where the performance of interest is related to the 
solar gain and the size of the building. The case study allows a detailed development 
and evaluation of the suggested techniques. 

4 Case Study 

4.1 Problem Scope 

In a typical scenario for the design of a new building, the architect would have in-
formation including the location, the plot shape and size, the surrounding buildings, and 
the program of the building. In performance-driven design, maximizing the perfor-
mance of interest is of primary concern. Then, in the early design phase, where the 
focus is on form finding, the problem would be expressed as finding a geometry for the 
building that maximizes the desired performance, given the simulation context (Figure 
1). 

 
Fig. 1. Optimization: context and expectation for the design of a new building. 

In this case study the goal was to generate a geometric form for a building that max-
imizes the average solar radiation gain during wintertime while keeping the size as 
close as possible to a predefined target. In more detail, the solar gain objective was 
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defined as the average of the received radiation per area unit of all the mesh faces of a 
generated geometry. The size was represented by the geometry volume. The location 
of the building was Boston. Wintertime for the environmental simulation purposes of 
this case study was defined as any time when the temperature is below 12 C. The plot 
shape was a square with a side of 10m. In addition, a maximum height of 10m for any 
building was set. 

In this problem, the term boundary condition refers to the configuration of the sur-
rounding buildings, as this was the only part of the solar simulation’s boundary condi-
tion that varied. The range of the boundary condition was up to one obstructing building 
on each of the east, south, and west sides of the plot, and up to three total obstructing 
buildings (Figure 2). With all obstructions having the same width and height, a total of 
342 unique boundary conditions were used.  

 
Fig. 2. Range of variable boundary conditions of the simulation. Each of the three parallelepi-

peds can move on the outlined locations or be omitted. 

4.2 Data Generation 

Geometry Representation. An optimization algorithm was used during the data gen-
eration phase together with a parametric model that generated the geometry. In archi-
tectural design, it is common for a parametric model to be created using high-level 
concepts, such as box or tower, and their transformations, such as scale or twist angle. 
However, a more neutral and low-level geometry representation is more suitable when 
no conceptual decisions are assumed. Therefore, a heightmap was used as the geometry 
generation model. Each parameter of the model controls the height of a point on a two-
dimensional grid. This representation provides a simple and intuitive way to describe 
geometries, with a fair amount of flexibility. One limitation is that it cannot describe 
certain three-dimensional forms. For example, a height map cannot encode information 
about cantilevers. 

Optimization. Objective. As described in the problem definition, the performance goal 
was to maximize the solar gain during the winter months. At the same time, the total 
volume was constrained to remain as close as possible to a predefined target (v=100m3). 
The volume constraint was used as a proxy for the architectural program, which would 
prescribe the total surface area in a real-life scenario. In practice, the volume constraint 
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was transformed to a minimization objective, calculated as the squared difference of 
the target volume from the current geometry volume.  

When optimizing a problem with multiple objectives, there are two major ap-
proaches. The first is to use scalarization with a single objective algorithm; the second 
is to use a multi-objective algorithm. This case study used scalarization, combining the 
two objectives into a single, minimization objective as described in equation (1), where 
a geometry is a mesh instance, J is the minimization objective, AvgRadiation(geome-
try) evaluates the average of the wintertime incident radiation on all the faces of the 
geometry mesh, Vol_target is the desired volume, and Vol(geometry) calculates the 
volume of a geometry. 

 J(geometry) = – AvgRadiation(geometry) + (Vol_target – Vol(geometry))2 * 10-3 (1) 

Optimal Solutions Selection. When solving a problem with multiple objectives, the 
Pareto front, i.e., the set of non-dominated solutions, has been commonly used to iden-
tify the best-performing solutions [15, 50–55]. Therefore, the individual objectives on 
each step of the optimization were recorded, and after the optimization was complete, 
the Pareto front was calculated, as suggested in relevant work [56]. For each optimiza-
tion problem, i.e., for each of the 342 boundary conditions, a total of 10 optimal results 
were selected to form a dataset.  

Implementation. The solar radiation calculation was performed using the open-
source plugin Ladybug [57], inside the visual programming platform Grasshopper3d in 
McNeel’s Rhinoceros 3d modeling software. A communication module for Grasshop-
per was developed using web sockets, connecting the parametric model and the solar 
simulations to an external optimization algorithm. The optimization algorithm was a 
customized implementation of Simulated Annealing (SA). The whole workflow was 
controlled by a command-line program that called the optimization algorithm and ob-
tained the performance results from Grasshopper.  

The 342 optimizations were run on a desktop computer for a fixed number of opti-
mization steps (n=3000). Each optimization required an average of approximately 20 
minutes to complete. After selecting the ten best solutions for each boundary condition, 
a dataset of 3420 pairs of boundary condition – optimal geometry was created. 

 

 
Fig. 3. Example of a boundary condition and the selected Pareto optimal geometries. 
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4.3 Learning 

Generative Models. Two popular types of generative models in ML are the Generative 
Adversarial Networks (GAN) and the Variational Auto-encoders (VAE). While either 
type could be used with the suggested method, this case study focuses on the use of a 
VAE because of the simpler setup and its natural ability to model a latent space. This 
last feature is essential since it is the navigation of this latent space that enables sam-
pling optimal geometries for specific boundary conditions. 

Data Format. In order to use the generated data with an ML model they first had to be 
converted to vectors. Since the boundary conditions in this problem are geometric, both 
boundary conditions and optimal geometries were incorporated into a single geometric 
representation. In ML, there are three primary ways to describe geometric data [58]: i) 
image-based (single or multi-view), ii) voxel-based, and iii) point clouds. Image-based 
methods are currently the most robust and well-developed methods and compared to 
the original parametric description of the geometries, they allow better modeling of the 
spatial relationships between the individual parameters of the vector representation 
through the use of convolutions in the learning model. 

Since all geometries in the dataset were created using a heightmap, a single depth 
map from a top view was used to describe the data (Figure 4). Multiple different image 
resolutions were considered for the depth map before a resolution of 16X16 pixels was 
selected based on initial results when using the VAE. 

 

 

Fig. 4. From left to right: i) optimized geometry with solar radiation colors – SE Isometric, ii) 
optimized geometry with depth map – SE Isometric, iii) top view projection of (ii) – final format 
of data. 

Using the Variational Auto-encoder (VAE). A VAE is a probabilistic model that 
learns an encoder function E(x) and a decoder function D(z), mapping from the original 
data to a lower-dimensional latent space and back to the original data by training on a 
reconstruction task. The objective is defined as the reconstruction loss with a regular-
izer. The reconstruction loss encourages the decoder to learn to reconstruct the data. 
The regularizer is the Kullback-Leibler divergence of the approximate posterior (i.e., 
the encoder’s distribution) from the prior (commonly chosen as a Gaussian distribution) 
[41]. Equations (2) and (3) provide a simplified description of the VAE in terms of the 
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encoder and decoder functions, where x is an input vector, z is the mapping of x in the 
latent space, gφ is a reparametrization function3, and y is the reconstruction of x. 

 z = E(x), z’ = gφ(z), y = D(z’) (2) 

 y = D(gφ(E(x))) (3) 

After a VAE has been trained, the decoder function can be isolated and used as a 
generative model that samples the latent space and generates data instances from the 
original distribution.  In this work, the decoder is used to generate images (depth maps) 
of boundary conditions and corresponding optimal geometries. 

The retrieval of data instances for a specific boundary condition was achieved as 
follows. First, a loss function Lb was defined as the distance of a generated instance’s 
boundary condition from the desired boundary condition, described in (4). Next, the 
boundary condition – i.e., the surrounding buildings abstracted to simple parallelepi-
peds – was translated to a depth map, following the same data format on which the 
VAE was trained, but without any corresponding optimal geometry. The desired geom-
etries were found by solving the optimization problem (5) of finding the sample z in 
the latent space, for which the decoder produces a depth map that minimizes the bound-
ary condition loss Lb.  

 Lb(target_boundary, y) = Distance(target_boundary, Boundary_Condition(y)) (4) 

 J(z) = Lb(target_boundary, D(z)) (5) 

Since the decoder – and consequently the loss Lb –  is a differentiable function, prob-
lem (5) can be solved using gradient descent. Vector z is initialized as a random sample 
of the latent space. The loss Lb is calculated, and its gradient is backpropagated to the 
decoder’s input, resulting in an update of z. Several updates are performed, until con-
vergence. Using gradient descent in this process is of particular importance because it 
enables high-speed retrieval of the appropriate latent space vector, in contrast to alter-
native search methods such as stochastic sampling. 

Model Architecture. Training. The VAE was implemented as a convolutional neural 
net (Figure 5). The encoder consists of two convolutional layers followed by a fully 
connected layer with output size 32. This output corresponds to the mean and standard 
deviation of a normal distribution of dimension 16, so the latent space is 16-dimen-
sional. The decoder – or generative model – follows a mirrored structure of the encoder. 
The input-output of the VAE is a 16X16 grayscale image. The reconstruction loss was 
defined as the L2 distance (squared difference) of the input-output images. 

 

 
3  The reparametrization is an essential component of the VAE, but only mentioned here for 

reasons of completeness. For details we direct the interested reader to [41]. 
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Fig. 5. VAE architecture used for training. 

Inference. For the process of finding appropriate boundary condition – optimal geom-
etry instances for a specific boundary condition, a boundary condition loss function was 
defined. This function calculates how close a generated image’s boundary condition is 
to the desired boundary condition. The generated image is first masked to only leave 
the boundary condition visible. Then, the masked image is compared to the desired 
boundary condition image (Figure 6). The distance of the two images was calculated 
using the sigmoid cross-entropy. 

Training. The total dataset was split into two parts, a training set containing 90% of 
the data (3,080 data points that belong to 308 boundary conditions) and a test set con-
taining the rest 10% of the data (340 data points that belong to 34 unique boundary 
conditions). The split was done through random selection and care to place all ten data 
points from the same boundary condition in the same group, ensuring that the boundary 
conditions found in the test dataset have not been encountered during the training. The 
VAE model was implemented using the Python library TensorFlow [59] and trained 
for 1000 epochs, using the Adam optimizer [60] and batch size 32. The loss function 
was implemented as the single sample Monte Carlo estimate of the expectation [61], 
where the reconstruction loss is the squared difference of the input-output images. Only 
minor improvements in the loss were gained between 200 and 1000 epochs. At 1000 
epochs, a validation loss of 9.3 was achieved. 

Inference. Inferred geometries were generated for the 34 unique boundary conditions 
of the test set using gradient descent. Due to the random initialization of the process 
and the non-convex shape of the latent space, different geometries can be obtained for 
the same boundary condition through repeated optimizations. For each of the boundary 
conditions, 100 geometries were generated. The optimization algorithm Adam was used 
with a learning rate of 0.02 for 400 iterations. Convergence was typically observed in 
less than 200 iterations. 
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Fig. 6. Inference using the decoder part of the VAE. 

5 Results 

The method introduced for predicting optimal geometries for specific boundary condi-
tions relies on the two underlying processes: i) a high-quality mapping of the data to a 
latent space, and ii) the successful navigation of this low-dimensional space.  

The first process requires a mapping function that can encode all the critical infor-
mation, as well as a well-structured latent space that enables the generation of new data 
through successful interpolations. Both processes are evaluated by assessing the quality 
of reconstructions that the VAE produces for the test set. If the VAE was used for a 
visual task, the reconstruction quality would refer to the similarity of the input and out-
put images. However, since the overall goal of this problem relates to building perfor-
mance, the evaluation was performed with respect to the specific performance goals of 
solar radiation and volume compliance, as they have been detailed in Section 4.2. The 
geometries derived from the VAE-reconstructed depth maps are expected to perform 
close to the optimization-derived geometries. 

Similarly, the navigation of the latent space is evaluated based on the performance 
of the geometries generated, constrained by the boundary conditions in the test set, us-
ing the process described in Section 4.3. 

Potential inaccuracies in the actual performance metrics of the dataset may have 
been introduced during the resampling process, when meshes based on a 5X5 height-
map were encoded to 16X16 depth map images. To avoid this issue when comparing 
SA-optimized with VAE-generated geometries, the reported performance of both the 
test set ground truth and the test set inferences was calculated following a common 
process based on the 16X16 depth map encodings of the geometry. 

5.1 Reconstruction Performance 

The reconstruction results for all 34 boundary conditions of the test set were coded into 
three categories after careful observation of the per-boundary condition scatterplots and 
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a comparison of the mean performances. The results for 5 boundary conditions were 
coded as type a: performance very close to the test set, 27 were coded as type b: per-
formance on one axis similar to the test set and the other axis better than the test set, 
and 2 were coded as type c: performance better than the test set. Diagrams a, b, and c 
of Figure 7 show a representative sample from each type. While some individual ge-
ometries with bad overall performance were generated, for each boundary condition, 
the mean performance of the generated geometries was similar or better than that of the 
test set. 

In more detail, in Figure 7, the performance of the test set samples is plotted against 
the performance of their VAE-reconstructions. The diagrams a, b, and c each corre-
spond to a different boundary condition. In the top row, each geometry instance corre-
sponds to a point on the scatterplot. In the bottom row, the mean and standard deviation 
of each group of geometries are plotted. The best overall performance would be located 
in the bottom left corner of the plot. A well-trained VAE should produce reconstruc-
tions with performances close to those of the test set. Because the VAE is a probabilistic 
model, multiple reconstructions were sampled for each instance of the test set (n=100). 
Additionally, the scatterplot includes the performance of two random geometry gener-
ators as baselines for comparison: one uniform random and one Gaussian (μ=5m, 
σ=1.5m). Two more baselines are included, coming from simple heuristics: a geometry 
with a flat horizontal roof and volume equal to the target (optimal volume deviation) 
and a geometry with a tilted roof at 42o facing south (optimal solar gain).  

 
Fig. 7. Performance of geometries for three representative cases. Each column a, b, c includes 
results for a single boundary condition. Geometries from the test set, VAE-reconstructions, base-
lines, and random generators. 
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Figure 7a indicates that most reconstructions perform close to the test set or along a 
curve close to the Pareto front line as implied by the test set samples. The mean perfor-
mance of the reconstructed geometries is very close to that of the test set geometries. 
However, in Figure 7b, the distribution of the reconstructions does not follow the one 
of the test set. The mean solar radiation performance of the reconstructions is better 
than that of the test set, while the mean volume deviation is approximately the same. 
Last, in Figure 7c, the performance of the reconstructions is superior in both axes. 

5.2 Inference Performance 

To evaluate the process of navigating the latent space, the performance of the in-
ferred geometries is compared against the performance of the reconstructed geometries. 
Figure 8 shows representative examples of optimal geometry inference for three differ-
ent boundary conditions, with varying success. In Figure 8a, the inferred geometries 
overlap with the reconstructed ones, which means that the optimal geometries as en-
coded through the VAE were successfully found. For other boundary conditions, such 
as the one in Figure 8b, the inference is not successful: there is a wide spread of perfor-
mance for the inferred geometries, with their mean performance located far from that 
of the reconstructions. Last, in Figure 8c, the performance of many inferred geometries 
is better than the one of the reconstructions. 

 
Fig. 8. Performance of geometries for three representative cases. Each column a, b, c includes 
results for a single boundary condition. Geometries from the test set, VAE-inferences, VAE-
reconstructions, baselines, and random generators. 
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The results for all 34 boundary conditions of the test set were coded in the three 
representative types. Results for 28 boundary conditions were similar to Figure 8a, i.e., 
successful, 5 were found to be similar to Figure 8b, i.e., not successful, and Figure 8c 
is the only case of this type.  

5.3 Hypervolumes 

 

Fig. 9. The hypervolumes of the Pareto front of the VAE-reconstructions and the VAE-inferences 
are plotted against the hypervolume of the test set for each of the 34 unique boundary conditions 
in the test set. 

To further evaluate the generated geometries’ performances for both the volume and 
the solar radiation objectives, the hypervolumes of the Pareto fronts were calculated, as 
shown in Figure 10. For each boundary condition, three Pareto fronts are compared: the 
ground truth (test set), the Pareto front of the reconstructed geometries, and the Pareto 
front of the inferred geometries. The hypervolumes of all three Pareto fronts were cal-
culated using the Python library pymoo [62], using a common reference point for each 
boundary condition.  

The bar graph in Figure 9 shows that for most boundary conditions, the hypervolume 
of the reconstructions is higher than that of the test set. VAE-generated geometries for 
boundary condition no. 14 have a significantly higher hypervolume than the test set. 
This is the same boundary condition as in Figure 7c and Figure 8c. The reason is that 
the test set geometries for boundary condition 14 are far from optimal. The mean per-
formance of the volume objective is close to random, as the optimization process that 
generated these geometries got stuck to some local optimum. However, the VAE was 
able to generalize correctly from higher-quality examples and generated better perform-
ing geometries than those found through optimization. These results indicate that the 
VAE has successfully interpolated the training data, allowing the model to generalize 
from the training examples to new cases. 

Finally, the inferred geometries Pareto front has a hypervolume close to that of the 
reconstructed ones for most boundary conditions. This confirms that the latent space 
navigation method, using gradient descent, can successfully find the latent vectors that 
generate optimally performing geometries. 
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6 Discussion 

6.1 VAE Sampling for Optimal Solar Gain Performance 

The results suggest that a VAE trained on optimally performing geometries can gener-
ate geometries with similar performance properties for new simulation contexts. To that 
extent, the VAE can potentially replace a computationally expensive optimization pro-
cess, offering a drastic speed improvement. For reference, a single geometry in the da-
taset typically took approximately 20 minutes to get optimized, while the introduced 
method used less than 5 seconds. 

In the case study, the VAE-generated geometries through the latent space search had 
a higher hypervolume than those generated through simulated annealing optimization 
for most boundary conditions. This suggests that, in general, the proposed ML-based 
method generated higher and more consistent quality results than the optimization 
method. A potential reason is that during training, as the VAE learns to compress the 
inputs to a lower-dimensional space, it identifies the essential features to prioritize dur-
ing the compression. As a result, the higher frequencies – or the noisy information – 
tend to get lost. On the other hand, a stochastic optimization process such as the SA 
tends to generate noisy results. Through this process, and by generalizing from all of 
the training data, the VAE may have filtered out noisy geometric features that were 
decreasing the solar performances. Finally, the results of the VAE model could be fur-
ther improved using more extensive and higher quality datasets and hyperparameter 
tuning. 

6.2 Beyond Quick Optimization 

Apart from quick automatic optimization, the suggested method opens up the potential 
for optimizing interactively, directly inside the 3d modeling environment. The way that 
the generative model has been used frees it from any tie to a specific parametric model 
and any associated limitations. Designer intentions regarding geometric form can be 
indicated through modeling and used to guide the generation process. For example, a 
user-designed geometry can easily be encoded as a depth map and guide the latent space 
search with an appropriate modification of the loss function Lb. 

6.3 Generalizability 

The case study demonstrated how a VAE can generate geometries with optimal solar 
gain and predefined size. However, the suggested method of optimal geometry genera-
tion through latent space navigation of a generative model can be used with any perfor-
mance metric of interest. The optimization workflow described in Section 4.2 could be 
followed, but individual components such as the geometry representation or the opti-
mization algorithm may be updated to match the needs of each specific problem. 

Furthermore, the suggested method is not limited to a single performance objective. 
The case study already hints at the use of multiple objectives, using the volume target. 
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6.4 Limitations 

Concerning the case study, the problem has been simplified and limited in scope in 
order to facilitate the evaluation of the overall method as well as its individual compo-
nents. In order to address problems of real-world complexity, a different geometry rep-
resentation and a more extensive dataset may be needed.  

One overall limitation of the suggested method is that the generative model may 
generate unpredictable results for simulation contexts that are entirely outside of the 
range of the training set. Appropriate coding of the boundary conditions may alleviate 
this issue. Additionally, similar to an optimization process, the performance objectives 
must be specified in advance, i.e., during the training process. The adaptability of the 
suggested method to changing objectives remains an open question. 

7 Conclusion 

This research introduced a novel method for optimal geometry generation that does not 
require the designer to use a parametric model. The method aims to provide a more 
intuitive and interactive alternative for guiding the early phase of performance-driven 
design than currently available tools. The case study demonstrated the feasibility of 
using a VAE as a generative model for optimally performing geometries. Future work 
can focus on expanding the range of the problem variables with real-world problem 
definition complexity and datasets. 

In order to take advantage of the full potential of the suggested method and meet the 
promise for early-phase design support, future work will also focus on different ways 
of presenting the results and modes of interactivity inside the modeling environment. 
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