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Preface

Classification algorithms form the basis of decision-making in most pattern recog-
nition problems, e.g. image recognition, speech and speaker recognition, iris recog-
nition, and spam mail detection. With the horizon of their applications expanding
at a fast pace, the need for further research has only increased. This fact becomes
particularly true because (a) each application poses its own set of challenges and
(b) one would always find a classifier with a particular improvisation that best suits
the situation. No matter which classification approach is used, generalization is an
important aspect. Generalization essentially indicates how well the trained classifier
works in real time, i.e. on unseen test data.

This monograph begins with the fundamentals of classifiers, bias-variance
tradeoff, statistical learning theory (SLT), probably approximate correct (PAC)
framework, maximum margin classifiers, and popular methods which improve gener-
alization like regularization, boosting, transfer learning, dropout in deep learning,
etc. Furthermore, the monograph solves four independent problems that have great
relevance for certain real-time applications.

The first part of the monograph aims at finding classifiers which exhibit extremely
low variance. Classification algorithms are traditionally designed to simultaneously
reduce errors caused by bias as well as variance. In many situations, low variance
becomes extremely crucial for getting tangible classification solutions and even slight
overfitting can have serious consequences on the test results. Classifiers with low vari-
ance have two main advantages: (1) the classifier statistically manages to keep the
test errors close to the training error, and (2) the classifier learns effectively even with
a small number of samples. The monograph introduces a class of classifiers called
Majority Vote Point Classifier (MVPC), which on account of the lower Vapnik Cher-
vonenkis (VC) dimension can exhibit lower variance than even linear classifiers. The
monograph contributes by estimating a trend for the MVP classifier’s VC dimension,
and validates its low variance on two real-time problems.

The monograph then focuses on the real-time application of condition-based
monitoring of machines using acoustic and vibration measurements. Signal data
acquired from machines are often found to change with time, wear and tear, and
subsequent repair of the machine. Classifiers are typically trained to perform the
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decision-making procedure during fault diagnosis/detection. Since data may change
with time, low generalization error is essential to avoid overfitting during classifica-
tion. Therefore, MVPC is seen to be best suited for this situation. However, MVPC
has a limitation that it may not be able to fit the data sufficiently, and may have high
training errors. The monograph presents a novel framework for pattern recognition,
where novel procedures for optimal data source (sensitive position) identification,
data acquisition, and feature selection are tailored to give the best possible training
performance with the MVP classifier. The understanding here is that if MVP gives low
training error, real-time fault diagnosis of machines becomes feasible with consistent
accuracy. The introduced framework was experimentally implemented and tested for
an air compressor condition monitoring application; associated real-time experiments
showed a significant improvement in the reliability of fault detection.

The third part of the monograph focuses on dealing with class noise in the Fuzzy
Support Vector Machine (FSVM) classifier. FSVM is considered to be a significant
addition over soft margin SVM like C-SVM, for the former can guard against outlier
sensitivity and the latter cannot. The ability of FSVM to absorb outliers strongly
depends on how well the training samples are assigned fuzzy membership values
(MVy5). Traditionally, the membership functions (MFs) used for FSVM were custom-
made for applications, and MFs used for one could in general not be used for others.
To overcome the limitation, General Purpose Membership Functions (GPMFs) are
defined in this monograph as those MFs which can universally be used for multiple
applications, and which allow FSVM to statistically perform better than C-SVM.
The monograph contributes to the GPMF literature in two stages. Firstly with help
of convex hulls, it presents a few limitations that FSVM faces while treating all
samples of a class with a single MF. Further, it recommends differential treatment of
data by categorizing them into two fuzzy sets: one containing possible non-outliers
and the other containing possible outliers. While possible outliers are modeled with
a normal MF, possible non-outliers are recommended to have a constant MV of ‘1°.
The chapter then introduces novel GPMFs which use clustering-based techniques
to detect possible outliers, and use Hausdorff Distance and pt-set to characterize
those possible outliers. To establish conclusions, the introduced GPMFs are thor-
oughly evaluated and statistically compared with earlier GPMFs on numerous real-
world benchmark datasets. The results show that proposed GPMFs not only perform
significantly better in treating class noise, but also execute with efficient run time
complexity.

Finally, a novel scheme to introduce deep learning in Fuzzy Rule-based classi-
fiers (FRCs) is presented. FRCs have gained prominence for their unique ability of
giving good classification performance, and allowing existing expert knowledge to be
used conjointly with training data. Recent innovations in Deep Neural Networks are
allowing researchers to tackle some very complex problems with improved theoret-
ical and empirical justifications, e.g. image classification and audio classification. The
monograph presents a scheme to incorporate stacked denoising sparse autoencoders
within the FRC framework. While stacking of denoising sparse autoencoders helps
learn the complex non-linear relationships among data and represent the input data
in a reduced compact feature space, the framework built toward FRC allows users
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to input expert knowledge to the system. To make denoising sparse autoencoders
learn more effectively, data pre-processing strategies have been proposed. Further,
to improve the classification performance and rule reduction performance of the
FRC, three fine-tuning strategies have also been proposed. The proposed framework
is tested across real-world benchmark datasets, and an elaborate comparison across
literature shows that proposed methods are capable of building FRCs that provide
state-of-the-art accuracies and/or a few rules, as per the user’s demand.

The monograph ends with an epilogue, on the use of autoencoders in transfer
learning, tumor classification, and condition monitoring problems. Furthermore,
pertaining to the research contributions made herein, the directions for possible future
work have also been discussed.

Boston, USA Rahul Kumar Sevakula
Kanpur, India Nishchal K. Verma
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