
Chapter 6
Hyperparameter Tuning and
Optimization Applications

Thomas Bartz-Beielstein

Abstract This chapter reflects on advantages and sense of use of Hyperparameter
Tuning (HPT) and its disadvantages. In particular it shows how important it is, to
keep the human in the loop, even if HPT works perfectly. The chapter presents
a collection of HPT studies. First, HPT applications in Machine Learning (ML)
and Deep Learning (DL) are described. A special focus lies on automated ML,
neural architecture search, and combined approaches. HPT software is presented.
Finally, model based approaches, especially applications with Sequential Parameter
Optimization Toolbox (SPOT) are discussed.

6.1 Surrogate Optimization

Starting in the 1960s, Response Surface Methodology (RSM) and related Design of
Experiments (DOE) methods were transferred from the engineering domain (e.g.,
from physics, agriculture, chemistry, and aerospace) to computer science (Mont-
gomery 2017). With the increasing computational power, computer simulations,
scientific computing and computational statistics gained importance (Gentle et al.
2004; Strang 2007). Kleijnen (1987) summarizes these ideas and methods in a very
comprehensible manner for simulation practitioners. After computer simulations
replaced expensive lab experiments, these computer simulations themselves were
substituted by even cheaper computer models: surrogate models or in short, surro-
gates, that imitate complex numerical calculations, were developed. Kriging surro-
gates (or Gaussian Processs (GPs) aka Bayesian Optimization (BO)), that gleaned
ideas fromcomputer experiments in geostatistics, enjoywide applicability, especially
in domains where predictions are required. Today, GP models are used as powerful
predictors for all sorts of applications in engineering and ML. GP methods replaced
classical regression methods in many domains. Santner et al. (2003), Forrester et al.
(2008b), and Gramacy (2020) wrote groundbreaking works in this field. In global
optimization, Efficient Global Optimization (EGO) became a very popular approach

T. Bartz-Beielstein (B)
Institute for Data Science, Engineering and Analytics, TH Köln, Cologne, Germany
e-mail: thomas.bartz-beielstein@th-koeln.de

© The Author(s) 2023
E. Bartz et al. (eds.), Hyperparameter Tuning for Machine and Deep Learning with R,
https://doi.org/10.1007/978-981-19-5170-1_6

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-5170-1_6&domain=pdf
mailto:thomas.bartz-beielstein@th-koeln.de
https://doi.org/10.1007/978-981-19-5170-1_6


166 T. Bartz-Beielstein

(Schonlau 1997; Jones et al. 1998). Emmerich (2005) showed that surrogates can
significantly accelerate evolutionary multi-objective optimization algorithms in the
presence of time consuming evaluations.

SPOT was one of the first approaches that combined classical regression, surro-
gate optimization (Kriging), and, especially for non-continuous variables, decision
trees, for the optimization of algorithm (hyper-)parameters (Bartz-Beielstein et al.
2004, 2005). Applied in hyperparameter optimization in Evolutionary Computation
(EC), see, e.g., Lobo et al. (2007), the collection Experimental Methods for the Anal-
ysis of Optimization Algorithms includes important publications in this field (Bartz-
Beielstein et al., 2010). For example, the following contributions paved the way for
important developments in HPT:

• Ridge and Kudenko (2010) describe the classical DOE approach, e.g., how to set
up experimental designs, for algorithm benchmarking.

• The contribution Sequential Model-Based Optimization by Hutter et al. (2010b)
laid the foundation for surrogate optimization inML and resulted in software tools
such as Sequential Model-Based Optimization for General Algorithm Configura-
tion (SMAC) (Hutter et al. 2010a).

• Iterative Racing (IRACE), which is a generalization of the Iterated F-race method,
is another popular tool for the automatic configuration of optimization algorithms
(Birattari et al. 2009).

Surrogate optimization is the de facto standard for complex optimization problems,
especially for continuous variables. Bartz-Beielstein and Zaefferer (2017) presented
methods for continuous and discrete optimization based on Kriging.While surrogate
models are well-established in the continuous optimization domain, they are less
frequently applied to more complex search spaces with discrete or combinatorial
solution representations (Zaefferer et al. 2014). Zaefferer (2018) Ph.D. thesis fills
this gap, showing how surrogate models like Kriging can be extended to arbitrary
problem types, if measures of similarity between candidate solutions are available.
Today, surrogate optimization is applied in the engineering domain as well as in
computer science, e.g., for HPT.

Example: Mixed-Discrete Problems

Many real-world optimization problems consider the optimization of ordinal inte-
gers, categorical integers, binary variables, permutations, strings, trees, or graphs
structures in general. These real-world problems pose complex search spaces which
require a deep understanding of the underlying solution representations.

Some of them, for example integers, are more suitable to be treated by classic
optimization algorithms. Others, such as trees, have to be handled by specifically
developed optimization algorithms. In general, solving these kinds of problems usu-
ally necessitates a significant number of objective function evaluations. However, in
many engineering problems, a single evaluation is based on either on experimental
or numerical analysis. This causes significant costs with respect to time or resources.



6 Hyperparameter Tuning and Optimization Applications 167

Surrogate Model Based Optimization (SMBO) aims to handle the complex vari-
able structures and the limited budget simultaneously. Sequential Parameter Opti-
mization (SPO) pursues the identification of global optima taking advantage of a
budget allocation process that maximizes the information gain in promising regions.
Gentile et al. (2021) presented an efficient method to face mixed-discrete optimiza-
tion problems using surrogates.

Example: Alzheimer’s Disease

Bloch and Friedrich (2021) usedML for early detection of Alzheimer’s disease espe-
cially based on magnetic resonance imaging. The authors use BO to time-efficiently
find good hyperparameters for Random Forest (RF) and Extreme Gradient Boosting
(XGBoost) models, which are based on four and seven hyperparameters and promise
good classification results. Those models are applied to distinguish if mild cognitive
impaired subjects from the Alzheimer’s disease neuroimaging initiative data set will
prospectively convert to Alzheimer’s disease.

The results showed comparable Cross Validation (CV) classification accuracies
for models trained using BO and grid-search, whereas BO has been less time-
consuming. Similar to the approaches presented in this book (and in many other
BO studies), the initial combinations for BO were set using Latin Hypercube Design
(LHD) and via random initialization. Furthermore, many models trained using BO
achieved better classification results for the independent test data set than the model
based on the grid-search. The best model was an XGBoost model trained with BO.

Example: Elevator Simulation and Optimization

Modern elevator systems are controlled by the elevator group controllers that assign
moving and stopping policies to the elevator cars. Designing an adequate Elevator
Group Control (EGC) policy is challenging for a number of reasons, one of them
being conflicting optimization objectives. Vodopija et al. (2022) address this task by
formulating a corresponding constrained multiobjective optimization problem, and,
in contrast to most studies in this domain, approach it using true multiobjective opti-
mization methods capable of finding approximations for Pareto-optimal solutions.

Specifically, they apply five multiobjective optimization algorithms with default
constraint handling techniques and demonstrate their performance in optimizing
EGC for nine elevator systems of various complexity. SPOwas used to tune the algo-
rithm parameters. The experimental results confirm the scalability of the proposed
methodology and suggest that NSGA-II equipped with the constrained-domination
principle is the best performing algorithm on the test EGC systems. The proposed
problem formulation and methodology allow for better understanding of the EGC
design problem and provide insightful information to the stakeholders involved in
deciding on elevator system configurations and control policies.



168 T. Bartz-Beielstein

Example: Cyber-physical Production Systems

Bunte et al. (2019) developed a cognitive architecture for Artificial Intelligence (AI)
in Cyber-physical Production Systemss (CPPSs). The goal of this architecture is to
reduce the implementation effort of AI algorithms in CPPSs. Declarative user goals
and the provided algorithm-knowledge base allow the dynamic pipeline orchestration
and configuration. A big data platform instantiates the pipelines and monitors the
CPPSs performance for further evaluation through the cognitive module. Thus, the
cognitive module is able to select feasible and robust configurations for process
pipelines in varying use cases. Furthermore, it automatically adapts the models and
algorithms based on model quality and resource consumption. The cognitive module
also instantiates additional pipelines to evaluate algorithms from different classes on
test functions.

Example: Resource Planning in Hospitals

Pandemics pose a serious challenge to health-care institutions. To support the
resource planning of health authorities from the Cologne region, BaBSim.Hospital,
a tool for capacity planning based on discrete event simulation, was created Bartz-
Beielstein et al. (2021a). The predictive quality of the simulation is determined by 29
parameters with reasonable default values obtained in discussions with medical pro-
fessionals. Bartz-Beielstein et al. (2021b) aimed to investigate and optimize these
parameters to improve BaBSim.Hospital using a surrogate optimization approach
and an in-depth sensitivity analysis.

Because SMBO is the default method in optimization via simulation, there are
many more examples from the application domain, e.g., Waibel et al. (2019) present
methods for selecting tuned hyper-parameters of search heuristics for computation-
ally expensive simulation-based optimization problems.

6.2 Hyperparameter Tuning in Machine and Deep
Learning

In contrast to HPT in optimization, where the objective function with related input
parameters is clearly specified for the tuner, the situation in ML is more complex.
As illustrated in Fig. 2.2, the tuner is confronted with several loss functions, metrics,
and data sets. As discussed in Sect. 2.3, there is no clear answer to this problem.

Furthermore, the situation in ML is more challenging than in optimization,
because ML methods develop an increasing complexity. Although for specific prob-
lems, especially when domain knowledge is available, methods such as Support
Vector Machine (SVM) or Elastic Net (EN) cannot be beaten by more complex
methods—especially under tight time and computational constraints. In these well
specified settings, hand-crafted SVM kernel methods cannot be beaten by complex

http://dx.doi.org/10.1007/978-981-19-5170-1_2
http://dx.doi.org/10.1007/978-981-19-5170-1_2


6 Hyperparameter Tuning and Optimization Applications 169

methods. Therefore, in somewell-defined domains, SVMs and related shallowmeth-
ods can still be considered as efficient methods.

With increasing computational power andmemory,more andmore complexmeth-
ods gain popularity. SomeML standard methods are cheap to evaluate, e.g., Decision
Tree (DT), model complexity and performance increase: RF replaced simple trees
and even more sophisticated methods such as XGBoost are considered state of the
art.

The situation is getting worse when Deep Neural Networks (DNNs) are included:
there is no limit for model complexity. As a consequence, HPT is developing very
quickly to catch up with this exploding model complexity. New branches and exten-
sions of existing HPT branches were proposed, e.g., Combined Algorithm Selec-
tion and Hyperparameter optimization (CASH), Neural Architecture Search (NAS),
AutomatedHyperparameter andArchitecture Search (AutoHAS), and further “Auto-
*” approaches (Thornton et al. 2013;Dong et al. 2020). The jungle of newMLandDL
is accompanied by a plethora of HPT approaches and related software tools. Hutter
et al. (2019) presents an overview of Automated Machine Learning (AutoML).

Although DL has been part of AI for a long time—first ideas go back to the
1940s—its break through happened in the early 2010s (McCulloch and Pitts 1943;
Krizhevsky et al. 2012). Since 2012, Convolutional Neural Networks (CNNs) are
the dominating approach in computer vision and image classification. In parallel,
DL was adopted in several other domains, e.g., Natural Language Processing (NLP).
DL methods outperformed standard ML methods such as SVMs in a wide range of
applications (Chollet and Allaire 2018). Although finding good hyperparameters for
shallow methods like SVM can be a challenging task, DL methods increased the dif-
ficulty significantly, because they explode the dimensionality of the hyperparameter
space, �.

Therefore, it is worth looking at HPT strategies that were developed for DL. For
example, Snoek et al. (2012) used the Canadian Institute for Advanced Research,
10 classes (CIFAR-10) data set, which consists of 60,000 32× 32 color images in
ten classes, for optimizing the hyperparameters of a CNNs. Bergstra et al. (2013)
proposed a meta-modeling approach to support automated Hyperparameter Opti-
mization (HPO), with the goal of providing practical tools that replace hand-tuning.
They optimized a three-layer CNN. Eggensperger et al. (2013) collected a library of
HPO benchmarks and evaluated three BO methods. Zoph et al. (2017) studied a new
paradigm of designingCNNarchitectures and describe a scalablemethod to optimize
these architectures on a data set of interest, for instance, the ImageNet classification
data set.

The following example describes a typical approach of HPT in DL.

Example: Robust and Efficient Hyperparameter Optimization in DL

Falkner et al. (2018) optimized six hyperparameters that control the training proce-
dure of a fully connected DNN (initial learning rate, batch size, dropout, exponential
decay factor for learning rate) and the architecture (number of layers, units per layer)



170 T. Bartz-Beielstein

Table 6.1 Elements of a typical HPT study: The hyperparameters and architecture choices for the
fully connected networks as defined in Falkner et al. (2018)

Hyperparameter Lower bound Upper bound Log-transform

Batch size 23 28 Yes

Dropout rate 0 0.5 No

Initial learning rate 1e − 6 1e − 2 Yes

Exponential decay
factor

−0.185 0 No

# hidden layers 1 5 No

# units per layer 24 28 Yes

for six different data sets gathered fromOpenML (Vanschoren et al. 2014), see Table
6.1.

The authors used a surrogateDNNas a substitute for training the networks directly.
To build this surrogate, they sampled 10 000 random configurations for each data set,
trained them for 50 epochs, and recorded the classification error after each epoch,
and total training time. Two independent RF models were fitted to predict these
two quantities as a function of the hyperparameter configuration used. Falkner et al.
(2018) noted that Hyperband (HB) initially performed much better than the vanilla
BO methods and achieved a roughly three-fold speedup over Random Search (RS).

Artificial toy functions were used in this study, and because BO does not work
well on high-dimensional mixed continuous and categorical configuration spaces,
they used a simple counting-ones problem to analyze this issue.

Tip: Handling mixed continuous, categorical, and combinatorial configuration
spaces

Zaefferer et al. (2014) discussed these topics in great detail.How to implementBO for
discrete (and continuous) optimization problems was analyzed in the seminal paper
by Bartz-Beielstein and Zaefferer (2017). Furthermore, Zaefferer (2018) provides an
in-depth treatment of this topic. In practice, SPOT can handle categorical and mixed
variables as discussed in Sect. 4.5. Combinatorial problems, such as the optimization
of permutations, strings, or graphs, can be treated by the R package CEGO (Zaefferer
2021).

Kedziora et al. (2020) analyzed what constitutes these systems and survey devel-
opments in HPO, e.g., multi-component models, Neural Network (NN) architecture
search, automated feature engineering, meta-learning, multi-level ensembling, mul-
tiobjective evaluation, flexible user involvement, and principles of generalization, to
name only a few.

http://dx.doi.org/10.1007/978-981-19-5170-1_4


6 Hyperparameter Tuning and Optimization Applications 171

Wistuba et al. (2019) described howcomplexDLarchitectures can be seen as com-
binations of a few elements, so-called cells, that are repeated to build the complete
network. Zoph and Le (2016) were the first who proposed a cell-based approach, i.e.,
choicesmade about aNNarchitecture are the set ofmeta-operations and their arrange-
ment within the cell. Another interesting example is function-preserving morphisms
implemented by theAuto-Keras package to effectively traverse potential networks Jin
et al. (2019).

NAS is discussed in (NAS Elsken et al. (2019)). Mazzawi et al. (2019) introduced
a NAS framework to improve keyword spotting and spoken language identification
models. Lindauer and Hutter (2020) describe AutoML for NAS.

Because optimizers can affect the DNN performance significantly, several tun-
ing studies devoted to optimizers were published during the last years: Schneider
et al. (2019) introduced a benchmarking framework called Deep Learning Opti-
mizer Benchmark Suite (DeepOBS), which includes a wide range of realistic DL
problems together with standardized procedures for evaluating optimizers. Schmidt
et al. (2020) performed an extensive, standardized benchmark of fifteen particularly
popular DL optimizers.

Menghani (2021) presented a survey of the core areas of efficiency in DL, e.g.,
spanning modeling techniques, infrastructure, and hardware accompanied by an
experiment-based guide along with code for practitioners to optimize their model
training and deployment.

Tunability, (seeDefinition 2.26) is an interesting concept that should bementioned
in the context of HPT (Probst et al. 2019a). The hope is that identifying tunable
hyperparameters, i.e., ones that model performance is particularly sensitive to, will
allow other settings to be ignored and results in a reduced hyperparameter search
space, �. Unfortunately, tunability strongly depends on the choice of the data set,
(X,Y), which makes a generalization of results very difficult.

Bischl et al. (2021a) provide an overview about HPO.

6.3 HPT Software Tools

The field of HPT software tools is under rapid development. Besides SPOT, which
is discussed in this book, several other hyperparameter optimization software pack-
ages were developed. We will list packages that show a certain continuity and that
hopefully will still be available in the near future.

The irace package implements the Iterated Race method, which is a general-
ization of the Iterated F-race method for the automatic configuration of optimization
algorithms. Hyperparameters are tuned by finding the most appropriate settings for
a given set of instances of an optimization problem. It builds upon the race package
by Birattari et al. (2009) and it is implemented in R (López-Ibáñez et al. 2016).

The IterativeOptimizationHeuristics profiler (IOHprofiler) is a benchmarking and
profiling tool for optimization heuristics, composed of two main components (Doerr
et al. 2018): The Iterative Optimization Heuristics analyzer (IOHanalyzer) provides

http://dx.doi.org/10.1007/978-981-19-5170-1_2


172 T. Bartz-Beielstein

an interactive environment to evaluate algorithms’ performance by various criteria,
e.g., bymeans of the distribution on the fixed-target running time and the fixed-budget
function values (Wang et al. 2022). The experimental platform, IterativeOptimization
Heuristics experimenter (IOHexperimenter), is designed to ease the generation of
performance data. Its logging functionalities allow to track the evolution of algorithm
parameters, making the tool particularly useful for the analysis, comparison, and
design of algorithms with (self-)adaptive hyperparameters. Balaprakash et al. (2018)
presented DeepHyper, a Python package that provides a common interface for the
implementation and study of scalable hyperparameter search methods. Karmanov
et al. (2018) created a “Rosetta Stone” of DL frameworks to allow data scientists
to easily leverage their expertise from one framework to another. They provided
a common setup for comparisons across GPUs (potentially CUDA versions and
precision) and for comparisons across languages (Python, Julia, R). O’Malley et al.
(2019) presented Keras tuner, a hyperparameter tuner for Keras with TensorFlow
(TF) 2.0. Available tuners are RS and Hyperband. Mendoza et al. (2019) introduced
Auto-Net, a system that automatically configures NN with SMAC by following the
same AutoML approach as Auto-WEKA and Auto-sklearn. Zimmer et al. (2020)
developed Auto-PyTorch, a framework for Automated Deep Learning (AutoDL)
that uses Bayesian Optimization HyperBand (BOHB) as a back-end to optimize the
full DL pipeline, including data pre-processing, network training techniques, and
regularization methods. Mazzawi and Gonzalvo (2021) presented Google’s Model
Search, which is an open-source platform for finding optimal ML models based on
TF. It does not focus on a specific domain.

Unfortunately, many of these software tools are results from research projects
that are funded for a limited time span. When the project ends (and the developers
successfully completed their Ph.D.s) the software package will not be maintained
anymore. Despite the dynamics and volatility in this area, we do not want to shy
away from giving an overview of the available software tools. Table 6.2 presents this
overview, which should be regarded as an incomplete snapshot, but not as the whole
picture of this field.

6.4 Summary and Discussion

Due to increased computational power, algorithm and model complexity grow into
new regions. It is more and more important to understand the working mechanisms
of complex neural networks. Putting the pieces together, it becomes clear that

1. there is a need for hyperparameter tuning,
2. surrogate optimization is an efficient approach, it can accelerate the search, and
3. mixed variable types (continuous, discrete)make hyperparameter tuningmore dif-

ficult. Especially dependencies between different hyperparameters produce new
challenges.



6 Hyperparameter Tuning and Optimization Applications 173

Table 6.2 Overview: HPT and HPO approaches

Software Application Method Publication

AutoPyTorch Fully automated DL (AutoDL) BOHB Zimmer et al.
(2020)

Auto-Sklearn Automated ML toolkit BO, meta-learning and
ensemble construction

Feurer et al.
(2020)

Auto-WEKA Search for the right WEKA ML
algorithm and optimizes its
hyperparameters

BO Kotthoff et al.
(2017)

BOHB Distributed HB BO and bandit-based methods Falkner et al.
(2018)

CAVE Report generation EDA, parameter importance
analysis

Biedenkapp
et al. (2018)

DEHB Black-box optimization HB, DE Awad et al.
(2021)

Google’s model
search

Build on TF, architecture search multiple trainers, a search
algorithm, a transfer learning
algorithm. Database to store
ML and DL models

Mazzawi and
Gonzalvo (2021)

Hyperopt Python library for serial and
parallel optimization, can handle
real-valued, discrete, and
conditional dimensions

RS and TPEs Bergstra et al.
(2013),
Koehrsen (2018)

IOHprofiler,
IOHanalyzer,
IOHexperi-
menter

analyze and visualize the
empirical performance of IOHs,
interactive plotting, statistical
evaluation, report generation

R packages Shiny,
Plotly, Rcpp

Doerr et al.
(2018), Wang
et al. (2022)

irace Heuristics, automatic
configuration of optimization
and decision algorithms,
appropriate settings of an
algorithm given a set of
instances of a problem

iterated racing López-Ibáñez
et al. (2016)

keras tuner Hyperparameter tuner for
keras/TF

RS, HB O’Malley et al.
(2019)

mlmachine Uses Hyperopt as a foundation
for performing experiments

BO Koehrsen (2018)

Optuna Software framework for ML TPE, RS, grid search,
CMA-ES

Akiba et al.
(2019)

Ray-Tune PyTorch, XGBoost, MXNet, and
Keras and other frameworks

Wrapper around open-source
optimization libraries such as
HyperOpt, SigOpt,
Dragonfly, and Facebook Ax

Liaw et al.
(2018)

SMAC Tool for algorithm configuration BO, racing mechanism Lindauer et al.
(2022)

SPOT Surrogate optimization Various surrogates and
optimizers, BO, RSM

Bartz-Beielstein
et al. (2017)



174 T. Bartz-Beielstein

To conclude this chapter, we would like to mention relevant criticism of HPT.
Some authors even claimed that extensive HPT is not necessary at all. For example,
Erickson et al. (2020) introduced a framework (AutoGluon-Tabular) that “requires
only a single line of Python to train highly accurate machine learning models on
an unprocessed tabular data set such as a CSV file”. AutoGluon-Tabular ensembles
severalmodels and stacks them inmultiple layers. The authors claim thatAutoGluon-
Tabular outperforms AutoML platforms such as TPOT, H2O, AutoWEKA, auto-
sklearn, AutoGluon, and Google AutoML Tables.

A highly recommendable study was performed by Choi et al. (2019), who pre-
sented a taxonomy of first-order optimization methods. Furthermore, Choi et al.
(2019) demonstrated the sensitivity of optimizer comparisons to the hyperparameter
tuning protocol: “optimizer rankings can be changed easily by modifying the hyper-
parameter tuning protocol.” These results raise serious questions about the practical
relevance of conclusions drawn from certain ways of empirical comparisons. They
also claimed that tuning protocols often differ between works studying NN optimiz-
ers and works concerned with training NNs to solve specific problems.

Yu, Sciuto, Jaggi, Musat, and Salzmann (Yang and Shami) claimed that the eval-
uated state-of-the-art NAS algorithms do not surpass RS by a significant margin, and
even perform worse in the Recurrent Neural Network (RNN) search space.

Balaji and Allen (2018) reported a multitude of issues when attempting to execute
automatic ML frameworks. For example, regarding the random process, the authors
state that “one common failure is in large multi-class classification tasks in which
one of the classes lies entirely on one side of the train test split”.

Li and Talwalkar (2019) stated that (i) better baselines that accurately quantify
the performance gains of NAS methods, (ii) ablation studies (to learn about the NN
by removing parts of it) that isolate the impact of individual NAS components, and
(iii) reproducible results that engender confidence and foster scientific progress are
necessary.

Liu (2018) remarks that “for most existent AutoMLworks, regardless of the num-
ber of layers of the outer-loop algorithms, the configuration of the outermost layer is
definitely done by human experts”. Human experts are shifted to a higher level, and
are still in the loop. The lack of insights in current AutoML systems (Drozdal et al.
2020) goes so far that some users even prefer manual tuning as they believe they can
learn more from this process (Hasebrook et al. 2022).

Taking this criticism seriously, we can conclude that transparency and inter-
pretability of both theML /DLmethod and theHPTprocess aremandatory. This con-
clusion becomes very important in safety-critical applications, e.g., security-critical
infrastructures (drinking water), in medicine, or automated driving.

But in general, we can conclude, that HPT is a valuable, in some situations an
even mandatory tool for understanding ML and DL methods. And, last but not least:
HPT tools can help to gain trust in AI systems.



6 Hyperparameter Tuning and Optimization Applications 175

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	6 Hyperparameter Tuning and Optimization Applications
	6.1 Surrogate Optimization
	6.2 Hyperparameter Tuning in Machine and Deep Learning
	6.3 HPT Software Tools
	6.4 Summary and Discussion


