Skip to main content

CIRS: A Confidence Interval Radius Slope Method for Time Series Points Based on Unsupervised Learning

  • Conference paper
  • First Online:
Book cover Data Science (ICPCSEE 2022)

Abstract

The rise of big data has brought various challenges and revolutions to many fields. Even though its development in many industries has gradually become perfect or even mature, its application and development in complex industrial scenarios is still in its infancy. We run research on single-dimensional time series point anomaly detection based on unsupervised learning: Unlike periodic time series, aperiodic or weakly periodic time series in industrial scenarios are more common. Considering the need for online real-time monitoring, we need to solve the problem of point anomaly detection of oil chromatographic characteristic gases. Thus, we propose a sliding window-based method for the unsupervised single-dimensional time series point anomaly detection problem called the confidence interval radius slope method (CIRS). CIRS is a fusion of knowledge-driven and data-driven methods to realize online real-time monitoring of possible data quality problems. From the experimental results, CIRS has obtained higher PR values than other unsupervised methods by the subject data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergman, M., Milo, T., Novgorodov, S., Tan, W.-C.: QOCO: a query oriented data cleaning system with oracles. Proc. VLDB Endow. 8(12), 1900–1903 (2015)

    Article  Google Scholar 

  2. Budalakoti, S., Srivastava, A.N., Akella, R., Turkov, E.: Anomaly detection in large sets of high-dimensional symbol sequences (2006)

    Google Scholar 

  3. Cai, R., Zhang, H., Liu, W., Gao, S., Hao, Z.: Appearance-motion memory consistency network for video anomaly detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 2, pp. 938–946 (2021)

    Google Scholar 

  4. Chakrabarti, K., Keogh, E.J., Mehrotra, S., Pazzani, M.J.: Locally adaptive dimensionality reduction for indexing large time series databases. ACM Trans. Database Syst. 27(2), 188–228 (2002)

    Article  Google Scholar 

  5. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 1–58 (2009)

    Article  Google Scholar 

  6. Chen, X., Wang, H.: Data-driven prediction of foodborne disease pathogens. In: Zeng, J., Qin, P., Jing, W., Song, X., Lu, Z. (eds.) ICPCSEE 2021, Part I. CCIS, vol. 1451, pp. 106–116. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-5940-9_8

    Chapter  Google Scholar 

  7. Corain, M., Garza, P., Asudeh, A.: DBSCOUT: a density-based method for scalable outlier detection in very large datasets. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 37–48 (2021)

    Google Scholar 

  8. Gogacz, T., Torunczyk, S.: Entropy bounds for conjunctive queries with functional dependencies. In: Benedikt, M., Orsi, G. (eds.) 20th International Conference on Database Theory, ICDT 2017, 21–24 March 2017, Venice, Italy. LIPIcs, vol. 68, pp. 15:1–15:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

    Google Scholar 

  9. Kumar, B., Sinha, A., Chakrabarti, S., Vyas, O.P.: A fast learning algorithm for one-class slab support vector machines. Knowl. Based Syst. 228, 107267 (2021)

    Article  Google Scholar 

  10. Lee, D., Shin, K.: Robust factorization of real-world tensor streams with patterns, missing values, and outliers. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 840–851 (2021)

    Google Scholar 

  11. Li, D., Shi, S., Zhang, Y., Wang, H., Luo, J.: an anomaly detection method based on learning of “scores sequence’’. In: Zhou, Q., Miao, Q., Wang, H., Xie, W., Wang, Y., Lu, Z. (eds.) ICPCSEE 2018. CCIS, vol. 902, pp. 296–311. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-2206-8_25

    Chapter  Google Scholar 

  12. Liu, F., et al.: Anomaly detection in quasi-periodic time series based on automatic data segmentation and attentional LSTM-CNN. IEEE Trans. Knowl. Data Eng. 34(6), 2626–2640 (2022)

    Article  Google Scholar 

  13. Liu, H., Li, X., Li, J., Zhang, S.: Efficient outlier detection for high-dimensional data. IEEE Trans. Syst. Man Cybern.: Syst. 48(12), 2451–2461 (2017)

    Article  Google Scholar 

  14. Lopatenko, A., Bravo, L.: Efficient approximation algorithms for repairing inconsistent databases. In: Chirkova, R., Dogac, A., Tamer Özsu, M., Sellis, T.K. (eds.) Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, 15–20 April 2007, pp. 216–225. IEEE Computer Society (2007)

    Google Scholar 

  15. Nairac, A., Townsend, N.W., Carr, R., King, S., Cowley, P., Tarassenko, L.: A system for the analysis of jet engine vibration data. Integr. Comput. Aided Eng. 6(1), 53–66 (1999)

    Article  Google Scholar 

  16. Peng, Z., Luo, M., Li, J., Xue, L., Zheng, Q.: A deep multi-view framework for anomaly detection on attributed networks. IEEE Trans. Knowl. Data Eng. 34(6), 2539–2552 (2022)

    Google Scholar 

  17. Sequeira, K., Zaki, M.J.: ADMIT: anomaly based data mining for intrusions. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 23–26 July 2002, Edmonton, Alberta, Canada, pp. 386–395. ACM (2002)

    Google Scholar 

  18. Song, S., Zhang, A., Wang, J., Yu, P.S.: SCREEN: stream data cleaning under speed constraints. In: Sellis, T.K., Davidson, S.B., Ives, Z.G. (eds.) Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia, 31 May–4 June 2015, pp. 827–841. ACM (2015)

    Google Scholar 

  19. Wang, S., Wu, L., Cui, L., Shen, Y.: Glancing at the patch: anomaly localization with global and local feature comparison. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 254–263 (2021)

    Google Scholar 

  20. Wang, X., Dong, X.L., Meliou, A.: Data X-ray: a diagnostic tool for data errors. In: Sellis, T.K., Davidson, S.B., Ives, Z.G. (eds.) Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia, 31 May–4 June 2015, pp. 1231–1245. ACM (2015)

    Google Scholar 

  21. Yin, S., Yi, Y., Wang, H.: Data cleaning about student information based on massive open online course system. In: Zeng, J., Jing, W., Song, X., Lu, Z. (eds.) ICPCSEE 2020, Part I. CCIS, vol. 1257, pp. 33–43. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-7981-3_3

    Chapter  Google Scholar 

  22. Yin, W., Yue, T., Wang, H., Huang, Y., Li, Y.: Time series cleaning under variance constraints. In: Liu, C., Zou, L., Li, J. (eds.) DASFAA 2018. LNCS, vol. 10829, pp. 108–113. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91455-8_10

    Chapter  Google Scholar 

  23. Zhang, A., Song, S., Wang, J.: Sequential data cleaning: a statistical approach. In: Özcan, F., Koutrika, G., Madden, S. (eds.) Proceedings of the 2016 International Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, 26 June–01 July 2016, pp. 909–924. ACM (2016)

    Google Scholar 

  24. Zhang, K., Hutter, M., Jin, H.: A new local distance-based outlier detection approach for scattered real-world data. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 813–822. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01307-2_84

    Chapter  Google Scholar 

Download references

Acknowledgments

The project is supported by State Grid Research Project “Study on Intelligent Analysis Technology of Abnormal Power Data Quality based on Rule Mining” (5700-202119176A-0-0-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lei, S. et al. (2022). CIRS: A Confidence Interval Radius Slope Method for Time Series Points Based on Unsupervised Learning. In: Wang, Y., Zhu, G., Han, Q., Wang, H., Song, X., Lu, Z. (eds) Data Science. ICPCSEE 2022. Communications in Computer and Information Science, vol 1628. Springer, Singapore. https://doi.org/10.1007/978-981-19-5194-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5194-7_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5193-0

  • Online ISBN: 978-981-19-5194-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics