Skip to main content

UAV-Assisted Blind Area Pedestrian Detection via Terminal-Edge-Cloud Cooperation in VANETs

  • Conference paper
  • First Online:
Book cover Neural Computing for Advanced Applications (NCAA 2022)

Abstract

The collaboration of UAV (Unmanned Aerial Vehicle) and VANETs (Vehicular Ad-hoc Networks) on enabling future intelligent transportation systems has received great attention in both academia and industries. In this paper, we make the first effort on presenting a terminal-edge-cloud cooperation architecture for UAV assisted blind area pedestrian detection in VANETs. On this basis, a task offloading algorithm is proposed, which offloads the computation task adaptively based on heterogeneous computation, communication and storage capacities of UAVs, vehicles, roadside infrastructures and the cloud server, aiming at minimizing the total service delay by striking a best balance between task computation delay and data transmission delay. Then, we implement the system prototype and conduct hardware-in-the-loop experiments to verify the effectiveness of the proposed algorithm. Finally, we test the system performance in realistic VANETs environments and demonstrate the feasibility of the proposed architecture and solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, K., Xu, X., Chen, M., Liu, B., Wu, L., Lee, V.C.: A hierarchical architecture for the future internet of vehicles. IEEE Commun. Mag. 57(7), 41–47 (2019)

    Article  Google Scholar 

  2. Gurugopinath, S., Sofotasios, P.C., Al-Hammadi, Y., Muhaidat, S.: Cache-aided non-orthogonal multiple access for 5G-enabled vehicular networks. IEEE Trans. Veh. Technol. 68(9), 8359–8371 (2019)

    Article  Google Scholar 

  3. Liang, L., Ye, H., Yu, G., Li, G.Y.: Deep-learning-based wireless resource allocation with application to vehicular networks. Proc. IEEE 108(2), 341–356 (2019)

    Article  Google Scholar 

  4. Hadiwardoyo, S.A., Calafate, C.T., Cano, J.C., Ji, Y., Hernández-Orallo, E., Manzoni, P.: Evaluating UAV-to-car communications performance: from testbed to simulation experiments. In: 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 1–6. IEEE (2019)

    Google Scholar 

  5. Lakew, D.S., Sa’ad, U., Dao, N.N., Na, W., Cho, S.: Routing in flying ad hoc networks: a comprehensive survey. IEEE Commun. Surv. Tutor. 22(2), 1071–1120 (2020)

    Article  Google Scholar 

  6. Almasoud, A.M., Selim, M.Y., Alqasir, A., Shabnam, T., Masadeh, A., Kamal, A.E.: Energy efficient data forwarding in disconnected networks using cooperative UAVs. In: 2018 IEEE Global Communications Conference, pp. 1–6. IEEE (2018)

    Google Scholar 

  7. Cheng, C.M., Hsiao, P.H., Kung, H., Vlah, D.: Maximizing throughput of UAV-relaying networks with the load-carry-and-deliver paradigm. In: 2007 IEEE Wireless Communications and Networking Conference, pp. 4417–4424. IEEE (2007)

    Google Scholar 

  8. Zhou, Y., Cheng, N., Lu, N., Shen, X.S.: Multi-UAV-aided networks: aerial-ground cooperative vehicular networking architecture. IEEE Veh. Technol. Mag. 10(4), 36–44 (2015)

    Article  Google Scholar 

  9. Motlagh, N.H., Bagaa, M., Taleb, T.: UAV-based IoT platform: a crowd surveillance use case. IEEE Commun. Mag. 55(2), 128–134 (2017)

    Article  Google Scholar 

  10. Xu, X., Liu, K., Xiao, K., Feng, L., Wu, Z., Guo, S.: Vehicular fog computing enabled real-time collision warning via trajectory calibration. Mob. Netw. Appl. 25(6), 2482–2494 (2020). https://doi.org/10.1007/s11036-020-01591-7

    Article  Google Scholar 

  11. Liu, C., Liu, K., Guo, S., Xie, R., Lee, V.C., Son, S.H.: Adaptive offloading for time-critical tasks in heterogeneous internet of vehicles. IEEE Internet Things J. 7(9), 7999–8011 (2020)

    Article  Google Scholar 

  12. Guo, H., Liu, J.: UAV-enhanced intelligent offloading for Internet of Things at the edge. IEEE Trans. Ind. Inf. 16(4), 2737–2746 (2019)

    Article  Google Scholar 

  13. Lyu, J., Zeng, Y., Zhang, R.: UAV-aided offloading for cellular hotspot. IEEE Trans. Wireless Commun. 17(6), 3988–4001 (2018)

    Article  Google Scholar 

  14. Zhang, S., Zeng, Y., Zhang, R.: Cellular-enabled UAV communication: a connectivity-constrained trajectory optimization perspective. IEEE Trans. Commun. 67(3), 2580–2604 (2018)

    Article  Google Scholar 

  15. Fadlullah, Z.M., Takaishi, D., Nishiyama, H., Kato, N., Miura, R.: A dynamic trajectory control algorithm for improving the communication throughput and delay in UAV-aided networks. IEEE Netw. 30(1), 100–105 (2016)

    Article  Google Scholar 

  16. Wu, H., Lyu, F., Zhou, C., Chen, J., Wang, L., Shen, X.: Optimal UAV caching and trajectory in aerial-assisted vehicular networks: a learning-based approach. IEEE J. Sel. Areas Commun. 38(12), 2783–2797 (2020)

    Article  Google Scholar 

  17. Liu, K., Xiao, K., Dai, P., Lee, V.C., Guo, S., Cao, J.: Fog computing empowered data dissemination in software defined heterogeneous VANETs. IEEE Trans. Mob. Comput. 20(11), 3181–3193 (2020)

    Article  Google Scholar 

  18. Liu, C., Liu, K., Ren, H., Xu, X., Xie, R., Cao, J.: RtDS: real-time distributed strategy for multi-period task offloading in vehicular edge computing environment. Neural Comput. Appl. 1–15 (2021). https://doi.org/10.1007/s00521-021-05766-5

  19. Wang, J., Liu, K., Li, B., Liu, T., Li, R., Han, Z.: Delay-sensitive multi-period computation offloading with reliability guarantees in fog networks. IEEE Trans. Mob. Comput. 19(9), 2062–2075 (2019)

    Article  Google Scholar 

  20. Zhou, Y., Liu, K., Xu, X., Liu, C., Feng, L., Chen, C.: Multi-period distributed delay-sensitive tasks offloading in a two-layer vehicular fog computing architecture. In: Zhang, H., Zhang, Z., Wu, Z., Hao, T. (eds.) NCAA 2020. CCIS, vol. 1265, pp. 461–474. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-7670-6_38

    Chapter  Google Scholar 

  21. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  22. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  23. Wang, M., Li, W., Wang, X.: Transferring a generic pedestrian detector towards specific scenes. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3274–3281. IEEE (2012)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 62172064 and 61872049, the Chongqing Young-Talent Program (Project No. cstc2022ycjh-bgzxm0039) and the Venture & Innovation Support Program for Chongqing Overseas Returnees (Project No. cx2021063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Q. et al. (2022). UAV-Assisted Blind Area Pedestrian Detection via Terminal-Edge-Cloud Cooperation in VANETs. In: Zhang, H., et al. Neural Computing for Advanced Applications. NCAA 2022. Communications in Computer and Information Science, vol 1638. Springer, Singapore. https://doi.org/10.1007/978-981-19-6135-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6135-9_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6134-2

  • Online ISBN: 978-981-19-6135-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics