Skip to main content

Multi-view Spectral Clustering with High-order Similarity Learning

  • Conference paper
  • First Online:
  • 715 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1637))

Abstract

Clustering objects with diverse attributes obtained from multiple views is full of challenges in fusing the multi-view information. Many of the present multi-view clustering (MVC) methods concentrate on direct similarity learning among data points and fail to excavate the hidden high-order similarity among different views. Therefore, it is difficult to obtain a dependable clustering assignments. To address this problem, we propose the high-order similarity (HOS) learning model for multi-view spectral clustering (MCHSL). The proposed MCHSL learns the first-order similarity (FOS), second-order similarity (SOS), and the HOS collaboratively to excavate the local structure relations, proximity structure relations of paired data points and the interactive-view relations among different views instead of the common similarity learning. Then spectral clustering is performed to obtain the final clustering assignments. Extensive experiments performed on some public datasets indicate that the proposed MCHSL has better clustering performance than benchmark methods in most cases and is able to reveal a dependable underlying similarity structure hidden in multiple views.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.cl.cam.ac.uk/research/dtg/.

  2. 2.

    http://cvc.yale.edu/projects/yalefaces/yalefaces.html.

References

  1. Cao, X., Zhang, C., Fu, H., Liu, S., Zhang, H.: Diversity-induced multi-view subspace clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 586–594. IEEE Computer Society (2015)

    Google Scholar 

  2. Chen, M., Huang, L., Wang, C., Huang, D.: Multi-view clustering in latent embedding space. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, pp. 3513–3520. AAAI Press (2020)

    Google Scholar 

  3. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  4. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. Knowl.-Based Syst. 151, 78–94 (2018)

    Article  Google Scholar 

  5. Kumar, A., Rai, P., Daumé, H.: Co-regularized multi-view spectral clustering. In: Advances in Neural Information Processing Systems, pp. 1413–1421 (2011)

    Google Scholar 

  6. Liang, W., et al.: Multi-view spectral clustering with high-order optimal neighborhood laplacian matrix. IEEE Trans. Knowl. Data Eng. 1 (2020)

    Google Scholar 

  7. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)

    Article  Google Scholar 

  8. Ma, J., Zhang, Y., Zhang, L.: Discriminative subspace matrix factorization for multiview data clustering. Pattern Recogn. 111, 107676 (2021)

    Article  Google Scholar 

  9. Mei, Y., Ren, Z., Wu, B., Shao, Y., Yang, T.: Robust graph-based multi-view clustering in latent embedding space. Int. J. Mach. Learn. Cybern. 13(2), 497–508 (2021). https://doi.org/10.1007/s13042-021-01421-6

    Article  Google Scholar 

  10. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, vol. 14, pp. 849–856. MIT Press (2001)

    Google Scholar 

  11. Nie, F., Cai, G., Li, X.: Multi-view clustering and semi-supervised classification with adaptive neighbours. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp. 2408–2414. AAAI Press (2017)

    Google Scholar 

  12. Nie, F., Wang, X., Huang, H.: Clustering and projected clustering with adaptive neighbors. In: The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 977–986. ACM (2014)

    Google Scholar 

  13. Peng, H., Wang, H., Hu, Y., Zhou, W., Cai, H.: Multi-dimensional clustering through fusion of high-order similarities. Pattern Recogn. 121, 108108 (2022)

    Article  Google Scholar 

  14. Ren, Z., Li, H., Yang, C., Sun, Q.: Multiple kernel subspace clustering with local structural graph and low-rank consensus kernel learning. Knowl.-Based Syst. 188, 105040 (2020)

    Article  Google Scholar 

  15. Ren, Z., Mukherjee, M., Lloret, J., Venu, P.: Multiple kernel driven clustering with locally consistent and selfish graph in industrial IoT. IEEE Trans. Industr. Inf. 17(4), 2956–2963 (2020)

    Article  Google Scholar 

  16. Ren, Z., Sun, Q., Wei, D.: Multiple kernel clustering with kernel k-means coupled graph tensor learning. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, pp. 9411–9418. AAAI Press (2021)

    Google Scholar 

  17. Vidal, R., Favaro, P.: Low rank subspace clustering (LRSC). Pattern Recogn. Lett. 43, 47–61 (2014)

    Article  Google Scholar 

  18. Wang, H., Yang, Y., Liu, B.: GMC: graph-based multi-view clustering. IEEE Trans. Knowl. Data Eng. 32(6), 1116–1129 (2020)

    Article  Google Scholar 

  19. Wang, H., et al.: Kernelized multiview subspace analysis by self-weighted learning. IEEE Trans. Multimedia 23, 3828–3840 (2020)

    Article  Google Scholar 

  20. Wen, J., et al.: Unified tensor framework for incomplete multi-view clustering and missing-view inferring. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI, pp. 10273–10281. AAAI Press (2021)

    Google Scholar 

  21. Xia, R., Pan, Y., Du, L., Yin, J.: Robust multi-view spectral clustering via low-rank and sparse decomposition. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2149–2155. AAAI Press (2014)

    Google Scholar 

  22. Ye, Q., Huang, P., Zhang, Z., Zheng, Y., Fu, L., Yang, W.: Multiview learning with robust double-sided twin SVM. IEEE Trans. Cybern. (2021)

    Google Scholar 

  23. Zhan, K., Zhang, C., Guan, J., Wang, J.: Graph learning for multiview clustering. IEEE Trans. Cybern. 48(10), 2887–2895 (2018)

    Article  Google Scholar 

  24. Zhang, C., Hu, Q., Fu, H., Zhu, P., Cao, X.: Latent multi-view subspace clustering. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR. pp. 4333–4341. IEEE Computer Society (2017)

    Google Scholar 

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China (Grant nos. 62106209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenwen Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mei, Y., Ren, Z., Wu, B., Shao, Y. (2022). Multi-view Spectral Clustering with High-order Similarity Learning. In: Zhang, H., et al. Neural Computing for Advanced Applications. NCAA 2022. Communications in Computer and Information Science, vol 1637. Springer, Singapore. https://doi.org/10.1007/978-981-19-6142-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6142-7_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6141-0

  • Online ISBN: 978-981-19-6142-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics