Skip to main content

TextSMatch: Safe Semi-supervised Text Classification with Domain Adaption

  • Conference paper
  • First Online:
Book cover Neural Computing for Advanced Applications (NCAA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1637))

Included in the following conference series:

  • 725 Accesses

Abstract

The performance of many efficient Deep semi-supervised learning(SSL) is severely degraded when the distribution of unlabeled and labeled data does not match. Some recent approaches have chosen to weaken or even remove out-of-distribution (OOD) data, which can lose the potential value of OOD data. We propose TextSMatch to solve this issue, a simple, safe and effective SSL method for text classification, which recycles the OOD data near the labeled domain to make full use of the information in OOD data. Specifically, adversarial domain adaptation is applied to the OOD data to project it into the space of ID and labeled data, and its recoverability is assessed using the use of migration probabilities. Moreover, TextSMatch unifies the mainstream methods. In addition to consistency regularization training of class probabilities for unlabeled data and its augmented data, we also normalized the structure of embedding with contrastive learning based on pseudo-labeled. TextSMatch performs significantly better than other baseline methods on AG News and Yelp datasets in scenarios such as class mismatch and different amounts of labeled data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://huggingface.co/datasets/ag_news.

  2. 2.

    https://www.yelp.com/dataset/challenge.

  3. 3.

    https://pypi.org/project/pytorch-transformers/.

References

  1. Jia, L., Zhang, Z., Wang, L., Jiang, W., Zhao, M.: Adaptive neighborhood propagation by joint l2, 1-norm regularized sparse coding for representation and classification. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 201–210. IEEE (2016)

    Google Scholar 

  2. Zhang, H., Zhang, Z., Zhao, M., Ye, Q., Zhang, M., Wang, M.: Robust triple-matrix-recovery-based auto-weighted label propagation for classification. IEEE Trans. Neural Networks Learn. Syst. 31(11), 4538–4552 (2020)

    Article  MathSciNet  Google Scholar 

  3. Zhang, Z., Li, F., Jia, L., Qin, J., Zhang, L., Yan, S.: Robust adaptive embedded label propagation with weight learning for inductive classification. IEEE Trans. Neural Networks Learn. Syst. 29(8), 3388–3403 (2017)

    Article  MathSciNet  Google Scholar 

  4. Sajjadi, M., Javanmardi, M., Tasdizen, T.: Regularization with stochastic transformations and perturbations for deep semi-supervised learning. In: NIPS, pp. 1163–1171 (2016)

    Google Scholar 

  5. Xie, Q., Dai, Z., Hovy, E., Luong, M.-T., Le, Q.V.: Unsupervised data augmentation for consistency training. In: NIPS (2020)

    Google Scholar 

  6. Lee, D.-H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, volume 3 (2013)

    Google Scholar 

  7. Berthelot, D., et al.: Mixmatch: a holistic approach to semi-supervised learning. In: NIPS, pp. 5050–5060 (2019)

    Google Scholar 

  8. Berthelot, D., et al.: Semi-supervised learning with distribution alignment and augmentation anchoring. In: ICLR, Remixmatch (2020)

    Google Scholar 

  9. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  10. He, K., Fan, H., Wu,, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  11. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: NIPS (2020)

    Google Scholar 

  12. Chen, J., Yang, Z., Yang, D.: Mixtext: linguistically-informed interpolation of hidden space for semi-supervised text classification. In: ACL, pp. 2147–2157 (2020)

    Google Scholar 

  13. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: ICLR, Workshop Track Proceedings (2017)

    Google Scholar 

  14. Miyato, T., Maeda, S., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)

    Article  Google Scholar 

  15. Oliver, A., Odena, A., Raffel, C., Cubuk, E.D., Goodfellow, I.J.: Realistic evaluation of deep semi-supervised learning algorithms. arXiv preprint arXiv:1804.09170 (2018)

  16. Chen, Y., Zhu, X., Li, W., Gong, S.: Semi-supervised learning under class distribution mismatch. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3569–3576 (2020)

    Google Scholar 

  17. Guo, L.-Z., Zhang, Z.-Y., Jiang, Y., Li, Y.-F., Zhou, Z.-H.: Safe deep semi-supervised learning for unseen-class unlabeled data. In: International Conference on Machine Learning, pp. 3897–3906. PMLR (2020)

    Google Scholar 

  18. Yang, X., Song, Z., King, I., Xu, Z.: A survey on deep semi-supervised learning. arXiv preprint arXiv:2103.00550 (2021)

  19. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical data augmentation with no separate search. arXiv preprint arXiv:1909.13719, 2(4), 7 (2019)

  20. Edunov, S., Ott, M., Auli, M., Grangier, D.: Understanding back-translation at scale. arXiv preprint arXiv:1808.09381 (2018)

  21. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: ICLR (2017)

    Google Scholar 

  22. Sohn, K., et al.: Simplifying semi-supervised learning with consistency and confidence. In: NIPS, Fixmatch (2020)

    Google Scholar 

  23. Grandvalet, Y., Bengio, Y., et al.: Semi-supervised learning by entropy minimization. In: CAP, pp. 281–296 (2005)

    Google Scholar 

  24. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  25. Peters, M.E., et al.: Deep contextualized word representations. In: NAACL-HLT, pages 2227–2237 (2018)

    Google Scholar 

  26. Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  27. Behrmann, N., Fayyaz, M., Gall, J., Noroozi, M.: Long short view feature decomposition via contrastive video representation learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9244–9253 (2021)

    Google Scholar 

  28. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)

  29. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 427–436. IEEE Computer Society (2015)

    Google Scholar 

  30. Liang, S., Sun, R., Li, Y., Srikant, R.: Understanding the loss surface of neural networks for binary classification. In: Dy, J.G., Krause, A. (eds.) International Conference on Machine Learning, pp. 2835–2843. PMLR, PMLR (2018)

    Google Scholar 

  31. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  32. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. arXiv preprint arXiv:1706.02690 (2017)

  33. Lotfollahi, M., Naghipourfar, M., Theis, F.J., Alexander Wolf, F.: Conditional out-of-distribution generation for unpaired data using transfer vae. Bioinformatics 36(Supplement_2), i610–i617 (2020)

    Google Scholar 

  34. Cai, Z., Ravichandran, A., Maji, S., Fowlkes, C., Tu, Z., Soatto, S.: Exponential moving average normalization for self-supervised and semi-supervised learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 194–203 (2021)

    Google Scholar 

  35. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  Google Scholar 

  36. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: IEEE, pp. 1125–1134 (2017)

    Google Scholar 

  37. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189. PMLR (2015)

    Google Scholar 

  38. Yao, Y., Deng, J., Chen, X., Gong, C., Wu, J., Yang, J.: Deep discriminative CNN with temporal ensembling for ambiguously-labeled image classification. In: AAAI, vol. 34, pp. 12669–12676 (2020)

    Google Scholar 

  39. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT, Bert (2019)

    Google Scholar 

Download references

Funding

The publication of this paper is funded by NSFC (No. U1711266) and Key-Area Research and Development Program of Guangdong Province (No. 2019B010153001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Lin, G., Zeng, N., Qu, Y., Zeng, K. (2022). TextSMatch: Safe Semi-supervised Text Classification with Domain Adaption. In: Zhang, H., et al. Neural Computing for Advanced Applications. NCAA 2022. Communications in Computer and Information Science, vol 1637. Springer, Singapore. https://doi.org/10.1007/978-981-19-6142-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6142-7_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6141-0

  • Online ISBN: 978-981-19-6142-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics