Skip to main content

A Spiking Neural Network for Brain-Computer Interface of Four Classes Motor Imagery

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1692))

Abstract

Spiking neural networks (SNN) has the advantages of low power consumption and high efficiency in processing temporal information. However, due to the difficulty of network training, there exist few studies about the applications of SNN in brain-computer interface (BCI), especially in the four-classification task of motor imagery (MI). In this study, we develop a four-layer SNN structure to solve the MI four-classification problem. Firstly, an improved optimization algorithm for Ben’s spiker algorithm (BSA) is presented to convert EEG signals into spike signals, which obtains about 50 times higher efficiency than the commonly used optimizing algorithms. Secondly, a SNN combined with spike long-short-time-memory (LSTM) module is proposed to perform four-classification tasks in MI. Finally, we introduce the channel-wise normalization strategy to facilitate the training of deeper layers. Our experiment on the publicly released dataset achieves the accuracy that is comparable to the previous work of one-Dimension convolution neural network (1D-CNN). Meanwhile, the number of parameters of proposed network is about 1/10 of that in 1D-CNN. This study reveals the great potential of the SNN in developing a low-power and wearable BCI system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Davies, M., et al.: Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1), 82–99 (2018)

    Article  Google Scholar 

  2. Hu, Y., Li, G., Wu, Y., Deng, L.: Spiking neural networks: A survey on recent advances and new directions. Control and Decision 36(1), 1–26 (2021)

    Google Scholar 

  3. Schrauwen, B., Campenhout, J.: BSA, a fast and accurate spike train encoding scheme. In: Proceedings of the International Joint Conference on Neural Networks, vol. 4, pp. 2825–2830 (2003)

    Google Scholar 

  4. Nuntalid, N., Dhoble, K., Kasabov, N.: EEG classification with BSA spike encoding algorithm and evolving probabilistic spiking neural network. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011. LNCS, vol. 7062, pp. 451–460. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24955-6_54

    Chapter  Google Scholar 

  5. Lotze, M., Halsband, H.: Motor imagery. J. Physiology-Paris 99, 386–395 (2006)

    Article  Google Scholar 

  6. Dose, H., Moller, J.S., Iversen, H.K., Puthusserypady, S.: An end-to-end deep learning approach to MI-EEG signal classification for BCIs. Expert Syst. Appl. 114, 532–542 (2018)

    Article  Google Scholar 

  7. Ghosh-Dastidar, S., Adeli, H.: A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection. Neural Network 22(10), 1419–1431 (2009)

    Article  Google Scholar 

  8. Carlos, D., Juan, H., Antelis, J.M., Falcon, L.E.: Spiking neural networks applied to the classification of motor tasks in EEG signals. Neural Netw. 122, 130–143 (2020)

    Article  Google Scholar 

  9. Wang, Q., Wang, L., Xu, S.: Research and application of spiking neural network model based on LSTM structure. Appl. Res. Comput. 38(5), 1381–1386 (2021)

    Google Scholar 

  10. Wang, Z., Zhang, Y., Shi, H., Cao, L., Yan, C., Xu, G.: Recurrent spiking neural network with dynamic presynaptic currents based on backpropagation. Int. J. Intell. Syst. 37(3), 2242–2265 (2021)

    Article  Google Scholar 

  11. Buteneers, P., Schrauwen, B., Verstraeten, D., Stroobandt, D.: Real-time epileptic seizure detection on intra-cranial rat data using reservoir computing. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5506, pp. 56–63. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02490-0_7

    Chapter  Google Scholar 

  12. Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., Maass, W.: Long short-term memory and learning-to-learn in networks of spiking neurons. In: Advances in Neural Information Processing Systems, pp. 787–797 (2018)

    Google Scholar 

  13. Kim, Y., Panda, P.: Optimizing deeper spiking neural networks for dynamic vision sensing. Neural Netw. 144, 686–698 (2021)

    Article  Google Scholar 

  14. Kim, S., Park, S., Na, B., Yoon, S.: Spiking-YOLO: spiking neural network for energy-efficient object detection. Proc. AAAI Conf. Artif. Intell. 34(7), 11270–11277 (2020)

    Google Scholar 

  15. Jia, Z., Ji, J., Zhou, X., Zhou, Y.: Hybrid spiking neural network for sleep electroencephalogram signals. Sci. China Inf. Sci. 65, 140403 (2022). https://doi.org/10.1007/s11432-021-3380-1

    Article  MathSciNet  Google Scholar 

  16. Yin, B., Corradi, F., Bohté, M.: Accurate and efficient time-domain classification with adaptive spiking recurrent neural networks. Nature Machine Intelligence 3(10), 905–913 (2021)

    Article  Google Scholar 

  17. Bohte, S.M.: Error-backpropagation in networks of fractionally predictive spiking neurons. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 60–68. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_8

    Chapter  Google Scholar 

  18. Mckennoch, S., Liu, D., Bushnell, L.G.: Fast modifications of the spikeprop algorithm. In: Proceedings of the 2006 IEEE International Joint Conference on Neural Network, pp. 3970–3977 (2006)

    Google Scholar 

  19. Ponulak, F., Kasinski, A.: Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting. Neural Comput. 22(2), 467–510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Taherkhani, A., Belatreche, A., Li, Y., Maguire, L.: Multi-DL-ReSuMe: multiple neurons delay learning remote supervised method. In: 2015 International Joint Conference on Neural Networks, pp. 1–7 (2015)

    Google Scholar 

  21. Neftci, E.O., Mostafa, H., Zenke, F.: Surrogate gradient learning in spiking neural networks: bringing the power of gradient-based optimization to spiking neural networks. IEEE Signal Process. Mag. 36(6), 51–63 (2018)

    Article  Google Scholar 

  22. Han, B., Srinivasan, G., Roy, K.: RMP-SNN: residual membrane potential neuron for enabling deeper high-accuracy and low-latency spiking neural network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13558–13567 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Shen, H., Hu, D. (2023). A Spiking Neural Network for Brain-Computer Interface of Four Classes Motor Imagery. In: Ying, X. (eds) Human Brain and Artificial Intelligence. HBAI 2022. Communications in Computer and Information Science, vol 1692. Springer, Singapore. https://doi.org/10.1007/978-981-19-8222-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8222-4_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8221-7

  • Online ISBN: 978-981-19-8222-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics