Skip to main content

Auto Machine Learning-Based Approach for Source Printer Identification

  • Conference paper
  • First Online:
Recent Challenges in Intelligent Information and Database Systems (ACIIDS 2022)

Abstract

This study investigates the applicability of the Auto Machine Learning-based approach (AutoML) for analyzing microscopic printed document images to attribute that document to its source printer. In this perspective, AutoML, a new rising star of machine learning in practice, has shone brightly as it can satisfy the demand of Machine Learning practitioner communities. In this work, three candidates from popular Machine Learning models and two representatives from AutoML are nominated for a competition. The challenges of traditional methods and the merits of applying AutoML are highlighted through the experiments. Especially the power of ensemble methods to achieve the best possible model for our experimental dataset. Furthermore, the learnability of AutoML to the different levels of uncertainties of printed patterns is also recognized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey, D.H., Borwein, J., Lopez de Prado, M., Zhu, Q.J.: The probability of backtest overfitting. J. Comput. Financ. (2016, forthcoming)

    Google Scholar 

  2. Tran, T., Nguyen, N., Nguyen, T., Mai, A.: Voting shrinkage algorithm for covariance matrix estimation and its application to portfolio selection. In: 2020 RIVF International Conference on Computing and Communication Technologies (RIVF), pp. 1–6. IEEE (2020)

    Google Scholar 

  3. IDC Forecasts Worldwide Page Volumes to Rebound in 2021, But Will Not Reach Pre-covid-19 Levels. https://www.idc.com/getdoc.jsp?containerId=prUS48126321. Accessed Oct 2021

  4. Oliver, J., Chen, J.: Use of signature analysis to discriminate digital printing technologies. In: NIP & Digital Fabrication Conference. Society for Imaging Science and Technology, vol. 1, pp. 218–222 (2002)

    Google Scholar 

  5. Chiang, P.-J., et al.: Printer and scanner forensics: models and methods. In: Sencar, H.T., Velastin, S., Nikolaidis, N., Lian, S. (eds.) Intelligent Multimedia Analysis for Security Applications, vol. 282, pp. 145–187. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11756-5_7

    Chapter  Google Scholar 

  6. Ferreira, A., Navarro, L.C., Pinheiro, G., dos Santos, J.A., Rocha, A.: Laser printer attribution: exploring new features and beyond. Forensic Sci. Int. 247, 105–125 (2015)

    Article  Google Scholar 

  7. Khanna, N., Delp, E.J.: Intrinsic signatures for scanned documents forensics: effect of font shape and size. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 3060–3063. IEEE (2010)

    Google Scholar 

  8. Chiang, P.-J., Allebach, J.P., Chiu, G.T.-C.: Extrinsic signature embedding and detection in electrophotographic halftoned images through exposure modulation. IEEE Trans. Inf. Forensics Secur. 6(3), 946–959 (2011)

    Article  Google Scholar 

  9. Mikkilineni, A.K., Ali, G.N., Chiang, P.-J., Chiu, G.T., Allebach, J.P., Delp, E.J.: Signature-embedding in printed documents for security and forensic applications. In: Security, Steganography, and Watermarking of Multimedia Contents VI, vol. 5306. International Society for Optics and Photonics, pp. 455–466 (2004)

    Google Scholar 

  10. LaPorte, G.M.: Chemical analysis for the scientific examination of questioned documents. Forensic Chem.: Fundam. Appl. 318–353 (2015)

    Google Scholar 

  11. Mai, B.A.H., Sawaya, W., Bas, P.: Image model and printed document authentication: a theoretical analysis. In: IEEE International Conference on Image Processing. IEEE-ICIP (2014)

    Google Scholar 

  12. Darwish, S.M., ELgohary, H.M.: Building an expert system for printer forensics: a new printer identification model based on niching genetic algorithm. Expert Syst. 38(2), e12624 (2021)

    Google Scholar 

  13. Nguyen, Q.-T., Mai, A., Chagas, L., Reverdy-Bruas, N.: Microscopic printing analysis and application for classification of source printer. Comput. Secur. 108, 102320 (2021)

    Article  Google Scholar 

  14. Nguyen, Q.P., Dang, N.T., Mai, A., Nguyen, V.S.: Features selection in microscopic printing analysis for source printer identification with machine learning. In: Dang, T.K., Küng, J., Chung, T.M., Takizawa, M. (eds.) FDSE 2021. CCIS, vol. 1500, pp. 210–223. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-8062-5_14

    Chapter  Google Scholar 

  15. Kipphan, H.: Handbook of Print Media: Technologies and Production Methods. Springer, Heidelberg (2001)

    Book  Google Scholar 

  16. Nguyen, T.Q., Delignon, Y., Chagas, L., Septier, F.: Printer identification from micro-metric scale printing. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6236–6239. IEEE (2014)

    Google Scholar 

  17. Nguyen, Q.T., Delignon, Y., Septier, F., Phan-Ho, A.T.: Probabilistic modelling of printed dots at the microscopic scale. Signal Process.: Image Commun. 62, 129–138 (2018)

    Google Scholar 

  18. Olson, E., et al.: Particle shape factors and their use in image analysis part 1: theory. J. GXP Compliance 15(3), 85 (2011)

    Google Scholar 

  19. Tran, T., Tran, L., Mai, A.: K-segments under bagging approach: an experimental study on extremely imbalanced data classification. In: 19th International Symposium on Communications and Information Technologies (ISCIT), pp. 492–495. IEEE (2019)

    Google Scholar 

  20. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: Advances in Neural Information Processing Systems, vol. 28, pp. 2962–2970 (2015)

    Google Scholar 

  21. Olson, R.S., Bartley, N., Urbanowicz, R.J., Moore, J.H.: Evaluation of a tree-based pipeline optimization tool for automating data science. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, ser. GECCO 2016, pp. 485–492. ACM, New York (2016). http://doi.acm.org/10.1145/2908812.2908918

Download references

Acknowledgement

This research is supported by a project with the International University, Ho Chi Minh City, Vietnam (contract No. T2020-01-IT/HĐ-ĐHQT-QLKH, dated 01/02/2021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Q. Phu Nguyen or An Mai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vo, PQ. et al. (2022). Auto Machine Learning-Based Approach for Source Printer Identification. In: Szczerbicki, E., Wojtkiewicz, K., Nguyen, S.V., Pietranik, M., Krótkiewicz, M. (eds) Recent Challenges in Intelligent Information and Database Systems. ACIIDS 2022. Communications in Computer and Information Science, vol 1716. Springer, Singapore. https://doi.org/10.1007/978-981-19-8234-7_52

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8234-7_52

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8233-0

  • Online ISBN: 978-981-19-8234-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics