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Abstract. In this paper, we propose a method to identify identical com-
modities. In e-commerce scenarios, commodities are usually described
by both images and text. By definition, identical commodities are those
that have identical key attributes and are cognitively identical to con-
sumers. There are two main challenges: 1) The extraction and fusion
of multi-modal representation. 2) The ability to verify identical com-
modities by comparing the similarity between representations and a
threshold. To address the above problems, we propose an end-to-end
multi-modal representation learning method with self-adaptive thresh-
old. We use a dual-stream network to extract multi-modal commod-
ity embeddings and threshold embeddings separately and then concate-
nate them to obtain commodity representation. Our method is able to
adaptively adjust the threshold according to different commodities while
maintaining the indexability of the commodity representation space.
We experimentally validate the advantages of self-adaptive threshold
and the effectiveness of multimodal representation fusion. Besides, our
method achieves third place with an F1 score of 0.8936 on the sec-
ond task of the CCKS-2022 Knowledge Graph Evaluation for Digital
Commerce Competition. Code and pretrained models are available at
https://github.com/hanchenchen/CCKS2022-track2-solution.

Keywords: Multi-modal representation · Self-adaptive threshold · CCKS-
2022 competition

1 Introduction

We aims to identify identical commodities based on representation learning.
Given a pair of commodities, we extract their representations and calculate the
similarity between representations. Then we judge whether the pair is identical
by comparing the similarity and threshold. In the second task of the CCKS-2022
Knowledge Graph Evaluation for Digital Commerce Competition, the commod-
ity pair data is from the recall results of actual online models and manually
labeled, where most of the negative pairs are similar but some key attributes do
not match.
? Equal contribution. Listing order is random.
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The traditional identical commodity verification methods usually adopt man-
ually adjusted thresholds. There are some disadvantages of such a method.

1) Inter-dataset adaptation problem. Since data distribution usually
varies between datasets, the corresponding representation distribution will be
different as well. The threshold determined on one dataset may be hard to achieve
comparable results on another, which affects the generalization of the model. It is
necessary to manually adjust the threshold, which is laborious and burdensome.

2) Intra-dataset adaptation problem. Since the commodity pairs are
usually similar, there representations often crowded together in the represen-
tation space. A slight fluctuation of the threshold may affect the performance
much. Moreover, it is unwise to use the same threshold for different kinds of
commodities.

3) Model optimization problem. Due to the high similarity of commodi-
ties, their similarity scores are usually higher than 0. However, the existing loss
functions (e.g., binary cross entropy loss) are usually centered at 0. Consequently,
the model is difficult to be optimized. Besides, it may destroy the representation
space to force pushing the representations of similar but non-identical commodi-
ties away.

To mitigate the above problems, we propose an end-to-end multi-modal rep-
resentation learning method with Self-Adaptive Threshold (SAT). We use a dual-
stream network to extract multi-modal commodity embeddings and threshold
embeddings separately and then concatenate them to obtain commodity repre-
sentation. Our method can adaptively adjust the threshold according to different
commodities, thus reducing the burden and drawbacks of manually adjusting the
threshold. The dual-stream network optimizes the commodity representation
distribution bidirectionally by either the commodity stream or the threshold
stream, which results in a better distribution of representations. Therefore, it
is less likely to force pushing away the representations of similar but different
commodities. Moreover, with our self-adaptive threshold, the similarity of rep-
resentations is basically centered at 0. While maintaining the indexability of the
commodity representation space, the model is easier to be optimized and the
representations are more robust (more details in Section 3.3).

Our main contributions are as follows:

1) We analyze the possible problems in the traditional commodity verification
approach and then propose a multi-modal representation approach with SAT to
learn the threshold adaptively. Our approach reduces the burden of adjusting
thresholds and enhances the generalization and robustness of the representations.

2) We do not do special processing for the inputs (e.g. no detector), and
the whole network is trained end-to-end so that other methods can be easily
integrated.

3) We experimentally validate the advantages of the self-adaptive thresh-
old and the effectiveness of our multi-modal representation fusion. Our method
achieves an F1 score of 0.8936 and takes third place on the second task of the
CCKS-2022 Knowledge Graph Evaluation for Digital Commerce Competition.
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Fig. 1. Multimodal representation learning with self-adaptive threshold. The area
in the red box is the traditional method of calculating the similarity of a commodity
pair. The score is obtained by subtracting the pre-defined threshold from the similarity.
When the score is greater than zero, the commodity pair is predicted to be identical, and
vice versa. The higher score, the greater probability of being an identical commodity
pair. We add a threshold stream to learn self-adaptive threshold embeddings and regard
the difference between the inner product of commodity embeddings and threshold
embeddings as the score.

2 Method

In this section, we present SAT, a novel multi-modal representation learning
method with self-adaptive threshold for commodity verification. We first detail
the self-adaptive threshold in Sec. 2.1, then introduce the model architecture in
Sec. 2.2 and the loss function in Sec. 2.3 finally. Fig. 1 shows the overview of the
proposed method.

2.1 Self-Adaptive Threshold

Dual-Stream Embedding We propose to use a dual-stream network to extract
the commodity embedding and threshold embedding. Given a commodity x, we
feed it to the commodity-stream f , and extract commodity embedding:

p = f(x) (1)

where p ∈ Rd1 is the commodity embedding; d1 is the commodity embed-
ding dimension. Correspondingly, we have a threshold-stream g to extract the
threshold embedding:

q = g(x) (2)
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where q ∈ Rd2 is the threshold embedding; d2 is the threshold embedding
dimension. Then we can acquire the complete embedding of commodity x by
concatenation:

z = [p, q] (3)

where z ∈ Rd1+d2 is the complete embedding; d1 + d2 is the embedding
dimension; [·, ·] represents concatenation.

Score Calculation As our method is based on representation learning, we do
not have to tackle a commodity pair simultaneously. Given a commodity pair
(x1,x2), we extract their embeddings separately:

z1 = [p1, q1]

z2 = [p2, q2]
(4)

The similarity s is obtained by the inner product between commodity em-
beddings p1 and p2:

s = p1 · p2 (5)

where · represents the inner product between vectors. Correspondingly, we
can get the self-adaptive threshold by the inner product between threshold em-
beddings q1 and q2:

t = q1 · q2 (6)

The final score is the difference between similarity s and threshold t:

SCORE = s− t (7)

If the score is greater than 0, it is a pair of identical commodities, otherwise
not. The higher score, the greater probability of being an identical commodity
pair.

2.2 Model Architecture

We use the identical architecture for both streams, but in fact we can design dif-
ferent architectures. Taking threshold stream as example, we have a RoBERTa [4]
to encode textual feature qu from text u and a Swin Transformer [5] to encode
visual feature qv from image v. Then we concatenate them and project the
concatenated embedding into a common embedding space by a linear layer h:

q = h([qu, qv]) (8)

Similarly, we can choose other backbones to encode single-modality features.
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RoBERTa

Swin

Fig. 2. Self-adaptive threshold network. We use Swin Transformer [5] and
RoBERTa [4] to encode image features and text features respectively. The features
of different modalities are fused by a linear layer.

2.3 Loss Function

We use cross entropy loss [2] to train the model:

L = − log
y exp (p1 · p2) + (1− y) exp (q1 · q2)

exp (p1 · p2) + exp (q1 · q2)
(9)

where y ∈ {0, 1} is the ground-truth.

3 Experiments

3.1 Experimental Setup

Datasets The official dataset contains about 50,000 commodity pairs for train-
ing and about 20,000 commodity pairs for test1. The training is only conducted
on the official training set. We do not use unlabeled data or external dataset
during training. When dividing the training and validation sets, we remove the
items that appear in the training set to ensure that the training set and valida-
tion set do not overlap. The ratio of the final training set and validation set is
about 5.6:1. We resize all images to 384 x 384. For text, we take the title and the
10 most frequent attributes as input. We do not apply augmentations on either
image or text data.

Implementation Details Our implementation is based on PyTorch [6] and
HuggingFace [7]. We initialize the image encoder with Swin Transformer [5], pre-
trained on ImageNet [1]. Text encoders are initialized from pre-trained RoBERTa [4].
We train SAT in an end-to-end manner. For all experiments, we use Adam op-
timizer [3] with betas [0.9, 0.999]. We train SAT for 100K steps on 2 NVIDIA

1 https://tianchi.aliyun.com/competition/entrance/531956/information

https://tianchi.aliyun.com/competition/entrance/531956/information
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A100 GPUs with a total batch size of 8, which takes about 20 hours. The initial
learning rate and weight decay are 2e-6 and 1e-6 respectively. We use cosine
annealing learning rate decay without warmup.

3.2 Ablation

In the ablation study, we validate the effectiveness of our method and analyze
the impact of input modalities and pre-trained models. If not mentioned, hyper-
parameters other than the ablated factor are the same.

Effectiveness of SAT We first build a simple baseline as plotted in the red box
of Fig. 1, which only have a commodity encoder. Besides, we add a Learnable
Threshold (LT) to it. The threshold is learnable and the same for all commodi-
ties. As shown in Tab. 1, our SAT outperforms baseline methods by a large
margin, indicating the effectiveness of SAT. Specifically, SAT brings significant
F1-score improvements (i.e. +0.0620 higher than LT).

Table 1. Results of different methods on the validation set.

Method F1-score Precision Recall Accuracy

Baseline 0.7250 0.6097 0.8940 0.6432
LT 0.8204 0.8139 0.8270 0.8096

SAT 0.8824 0.8795 0.8853 0.8759

Impact of Modality We further analyze the input modalities. Tab. 2 shows
the detailed comparisons. Image-only SAT achieves better performance than
text-only, with a lead of 0.0612 on F1 score. Taking text and images together as
input can further improve the performance. We believe that SAT can be further
enhanced with other modality inputs, which is worth exploring in the future
study.

Table 2. Results of SAT with different input modalities.

Text Image F1-score Precision Recall Accuracy

3 0.7888 0.7555 0.8251 0.7676
3 0.8500 0.8599 0.8403 0.8440

3 3 0.8824 0.8795 0.8853 0.8759
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Table 3. Ablation study of pre-trained models

Pre-trained F1-score Precision Recall Accuracy

7 0.7815 0.7606 0.8037 0.7637
3 0.8824 0.8795 0.8853 0.8759

Impact of Pre-trained Models. We also study the impact of pre-trained mod-
els. As mentioned above, we use Swin Transformer [5] pre-trained on ImageNet-
1k and ImageNet-22k and pre-trained RoBERTa [4]. In this ablation, we random
initialize the Swin Transformer [5] and RoBERTa [4]. As shown in Tab. 3, we
observe significant performance improvement with pre-trained models, which
indicates the importance of pre-trained models.

3.3 Score Distribution
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Fig. 3. Visualization of score distribution. We show histograms of scores of LT
and SAT. The density of the score is estimated by kernel density estimation. Compared
to LT, the peak density of SAT is lower and farther away from the threshold.

Fig. 3 shows the score distribution of LT and SAT. As shown in Fig. 3(a),
the density peak of negative pairs is high with LT. In the meanwhile, the density
peak of both positive and negative pairs is near the threshold, which means there
are quantities of pairs around the threshold. The higher density peak and the
closer density peak to the threshold, the more susceptible to threshold changes. A
slight fluctuation of the threshold may affect the performance much. In addition,
LT heavily depends on the training data distribution, not conducive to model
generalization. By contrast, the density curve of SAT is much smoother and
much easier to more distinctive than LT as shown in Fig. 3(a). It can be seen
that the density peak of SAT is lower and farther away from the threshold. This
indicates that default threshold 0 is virtually an optimum. Therefore without



8 C. Han and H. Jia

manually adjusting the threshold, we can distinguish positive and negative pairs
by the default threshold of 0.

4 Conclusion

In this paper, we first analyzed the potential problems of traditional represen-
tation learning in the commodity verification task. Then we proposed SAT and
demonstrated its effectiveness and advantages by quantitative experiments and
score distribution visualization. With SAT, we obtained a representative and dis-
criminative commodity representation space and achieved excellent performance.
As future work, we would like to extend SAT to other multimodal representation
learning tasks.
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