Skip to main content

Image Attribute Modification Based on Text Guidance

  • Conference paper
  • First Online:
Wireless Sensor Networks (CWSN 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1715))

Included in the following conference series:

  • 380 Accesses

Abstract

The goal of this paper is to manipulate image attributes using text description. Although many methods can synthesize images with new properties from text, they cannot fully preserve the text-independent content of the original image. There are two major limitations: (1) Some important details in image sub-region will be lost in the process of image modification; (2) Compared with the original image, the shape and edge of the object in the modified image will be more blurred. Therefore, we propose a novel framework edge aware generative adversarial network (EA-GAN) that uses edge information to guide image modification, which ensures the network’s ability to identify local regions and realizes accurate modification of image sub-regions. At the same time, an edge reconstruction loss (ERLoss) is added to the generator to constrain the generation of edges, generate sharper edges, and improve the clarity of the image. The experimental data on the CUB and Oxford-102 datasets show that the algorithm used in this paper can well distinguish the corresponding image features in the conditional text, and modify the image attribute of specific regions in the image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.: Generative Adversarial Nets. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  2. Dong, H., Yu, S., Wu, C.,: Semantic Image Synthesis via Adversarial Learning. In: ICCV, pp. 5707–5715 (2017) 10.1109/iccv.2017.608

    Google Scholar 

  3. Nam, S., Kim, Y., Kim, S.J.: Text-Adaptive Generative Adversarial Networks: Manipulating Images with Natural Language. In: NeurIPS, pp. 42–51 (2018)

    Google Scholar 

  4. Geirhos, R., Rubisch, P., Michaelis, C.: ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In: ICLR (2019)

    Google Scholar 

  5. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: ICML, pp. 1060–1069 (2016)

    Google Scholar 

  6. Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., Metaxas, D.N.: Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks. In: Proceedings of the IEEE international conference on computer vision, pp. 5907–5915 (2017) 10.1109/iccv.2017.629

    Google Scholar 

  7. Xu, T., Zhang, P., Huang, Q., Zhang, H., Gan, Z., Huang, X., He, X.: Attngan: Fine-grained text to image generation with attentional generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1316–1324 (2018)

    Google Scholar 

  8. Yu, Y., Gong, Z., Zhong, P., Shan, J.: Unsupervised representation learning with deep convolutional neural network for remote sensing images. In: Zhao, Y., Kong, X., Taubman, D. (eds.) ICIG 2017. LNCS, vol. 10667, pp. 97–108. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71589-6_9

    Chapter  Google Scholar 

  9. Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1511–1520 (2017)

    Google Scholar 

  10. Isola, P., Zhu, J. Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  11. Wang, T. C., Liu, M. Y., Zhu, J. Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018) https://doi.org/10.1109/cvpr.2018.00917

  12. Liu, M. Y., Tuzel, O.: Coupled generative adversarial networks. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  13. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  14. Catherine, W., Steve, B., Peter, W., Pietro, P., Serge B.: The caltech-ucsd birds-200-2011dataset (2011)

    Google Scholar 

  15. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  16. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  17. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp. 722–729 (2008)

    Google Scholar 

  18. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  19. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019) https://doi.org/10.1109/cvpr.2019.00453

  20. Yu, Y., Gong, Z., Zhong, P., Shan, J.: Unsupervised representation learning with deep convolutional neural network for remote sensing images. In: Zhao, Y., Kong, X., Taubman, D. (eds.) ICIG 2017. LNCS, vol. 10667, pp. 97–108. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71589-6_9

    Chapter  Google Scholar 

  21. Liu, X., Yin, G., Shao, J., Wang, X.: Learning to predict layout-to-image conditional convolutions for semantic image synthesis. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  22. Yin, G., Liu, B., Sheng, L., Yu, N., Wang, X., Shao, J.: Semantics disentangling for text-to-image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2327–2336 (2019)

    Google Scholar 

  23. Tao, M., et al.: Df-gan: Deep fusion generative adversarial networks for text-to-image synthesis. arXiv preprint arXiv:2008.05865(2020)

  24. He, Z., Zuo, W., Kan, M., Shan, S., Chen, X.: Arbitrary facial attribute editing: Only change what you want. arXiv preprint arXiv:1711.10678, vol. 1(3) (2017)

  25. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Let there be color! Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. ACM Trans. Graph. (ToG) 35(4), 1–11 (2016)

    Article  Google Scholar 

  26. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: Feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  27. Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36

    Chapter  Google Scholar 

  28. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)

    Google Scholar 

  29. Johnson, Justin, Alahi, Alexandre, Fei-Fei, Li.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, Bastian, Matas, Jiri, Sebe, Nicu, Welling, Max (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  30. Isola, P., Zhu, J. Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  31. Lample, G., Zeghidour, N., Usunier, N., Bordes, A., Denoyer, L., Ranzato, M.A.: Fader networks: Manipulating images by sliding attributes. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  32. Li, B., Qi, X., Lukasiewicz, T., Torr, P.H.: ManiGAN: Text-guided image manipulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7880–7889 (2020)

    Google Scholar 

  33. Liao, W., Hu, K., Yang, M.Y., Rosenhahn, B.: Text to image generation with semantic-spatial aware GAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18187–18196 (2022)

    Google Scholar 

  34. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12873–12883 (2021). https://doi.org/10.1109/cvpr46437.2021.01268

  35. Van Den Oord, A., Vinyals, O.: Neural discrete representation learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  36. Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Sutskever, I.: Zero-shot text-to-image generation. In: International Conference on Machine Learning, pp. 8821–8831. PMLR (2021)

    Google Scholar 

  37. Ding, M., et al.: Cogview: Mastering text-to-image generation via transformers. Advances in Neural Information Processing Systems 34, 19822–19835 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, L., Li, X., Fu, C., Chen, Z. (2022). Image Attribute Modification Based on Text Guidance. In: Ma, H., Wang, X., Cheng, L., Cui, L., Liu, L., Zeng, A. (eds) Wireless Sensor Networks. CWSN 2022. Communications in Computer and Information Science, vol 1715. Springer, Singapore. https://doi.org/10.1007/978-981-19-8350-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8350-4_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8349-8

  • Online ISBN: 978-981-19-8350-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics