
1

Defending Adversarial Examples by Negative
Correlation Ensemble

Wenjian Luo, Senior Member, IEEE, Hongwei Zhang, Linghao Kong, Zhijian Chen, Ke Tang, Senior
Member, IEEE

Abstract—The security issues in DNNs, such as adversarial
examples, have attracted much attention. Adversarial examples
refer to the examples which are capable to induce the DNNs
return completely predictions by introducing carefully designed
perturbations. Obviously, adversarial examples bring great se-
curity risks to the development of deep learning. Recently,
Some defense approaches against adversarial examples have
been proposed, however, in our opinion, the performance of
these approaches are still limited. In this paper, we propose
a new ensemble defense approach named the Negative Corre-
lation Ensemble (NCEn), which achieves compelling results by
introducing gradient directions and gradient magnitudes of each
member in the ensemble negatively correlated and at the same
time, reducing the transferability of adversarial examples among
them. Extensive experiments have been conducted, and the results
demonstrate that NCEn can improve the adversarial robustness
of ensembles effectively.

Index Terms—Deep learning, adversarial examples, ensemble,
negative correlation

I. INTRODUCTION

Deep Neural Networks (DNN) have achieved significant
improvements in various domains, typically like image clas-
sification, face recognition and autonomous driving [1]–[6].
However, there are serious security issues in DNNs which
have attracted much attention in recent years [7]. Specifically,
studies have shown that DNN are vulnerable to the attacks
from adversarial examples, which are generated by adding
delicate and imperceptible perturbation to the benign samples,
and aims to prompt the DNNs to make incorrect predictions
[8].

Many algorithms have been proposed for generating adver-
sarial examples [8]–[16]. These algorithms can be divided into
white-box attacks and black-box attacks according to the ac-
cessibility. White-box attack algorithms, such as Fast Gradient
Sign Method (FGSM) [8], Iterative Fast Gradient Sign Method
(I-FGSM) [9], DeepFool [10] and C&W [11], exploit both
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the network structures, hyperparameters and other available
information of the target model, to calculate the gradient
and such that generate adversarial examples. On the contrary,
black-box attack algorithms, such as Zero Order Optimization
(ZOO) [17], Autoencoder based Zero Order Optimization
(AutoZoom) [18], Boundary Attack [12], HopJumpSkippAt-
tack [13], Momentum Iterative Fast Gradient Sign Method
(MI-FGSM) [14], Diverse Input Iterative Fast Gradient Sign
Method (DIM) [15] and Skip Gradient Method (SGM) [16],
are capable to generate adversarial examples without accessing
the all the information of the target model (e.g. not accessing
the target model but leveraging a substitution model). Notably,
the black-box algorithms such as MI-FGSM can also be used
in white-box setting scenarios, where they can directly access
the target model.

Effective defenses against adversarial examples are usually
achieved by detecting adversarial perturbations or improving
the robustness of the model. The approaches of detecting
adversarial perturbations, such as the key-based network in
[19], the MagNet framework in [20] and the feature squeezing
in [21], are implemented mainly by detecting or cleaning the
input data through technical means, so that can discover the
adversarial examples in advance or destroy some key struc-
tures constituting the adversarial examples. Differently, the
approaches of improving the robustness of the model, such as
the gradient regularization [22], adversarial training [23] and
the defensive distillation [11], are implemented by changing
some specific properties of the target model, such that enhance
the robustness of the model to small perturbations.

Recently, some studies have found that, for a same learning
task, different models will learn different decision boundaries
due to the differences in their model structures, initial weights,
and training methods, and by which we can infer that an
adversarial example which can fool one model may not be
capable to fool another ones [24]. Intuitively, the vulnerability
of a single model can be avoided through model ensemble.
Kariyappa et al. [25] have proposed the Gradient Alignment
Loss (GAL) to improve the diversity of ensemble by reducing
the dimension of shared adversarial subspace (ADV-SS). Pang
et al. [26] have proposed a training method named Adaptive
Diversity Promoting (ADP) to make the non-maximum pre-
dictions of different members in the ensemble orthogonal to
each other, so that can improve the diversity of the ensemble
without compromising the prediction accuracy. What’s more,
considering the influence of the gradient magnitude and the
gradient angle in an ensemble, Dabouei et al. [27] have
proposed joint Gradient Phase and Magnitude Regularization
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(GPMR) based on GAL to obtain the effective defense interac-
tion by considering both the optimal geometric boundary and
the gradient magnitude of the members in the ensemble. How-
ever, although the ensemble methods can achieve adversarial
robustness by increasing the diversity, the complementarity
among members is neglected during the training which may
lead to low Performance when facing various adversarial
examples attack. For example, an adversarial example which
can fool one member of the ensemble may also be capable to
fool the other members due to its transferability.

In this paper, in order to leverage the interactions between
members in the ensemble and reduce the transferability of
adversarial examples among members, we propose to train
classifiers in the ensemble based on the negative correlation
principle and accordingly, design a new ensemble defense
strategy (NCEn) to improve the adversarial robustness of
ensembles. In NCEn, we make the gradient angle and the
gradient magnitude of each member with respect to the input
x negatively correlated, thus prompting the gradient directions
to have the greatest diversity, and the gradient magnitude
to be balanced. Specifically, for realizing the greatest diver-
sity of gradient directions based on negative correlation, the
cosine similarity between the gradients of any member and
the ensemble is trained negatively correlated with the cosine
similarity between the ensemble and all other members. So
that we can reduce the number of members that are vulnerable
to adversarial perturbation ε. After this, we make the gradient
magnitude of any member in the ensemble to be negatively
correlated with the gradient magnitude of other members in
the ensemble, which indicates that the prediction results of the
ensemble will not be greatly compromised by the maximum
gradient magnitude of individual members in the ensemble.

The contributions of this paper can be summarized as
follows.
• We propose a novel negative correlation ensemble

(NCEn). Based on the principle of negative correlation,
NCEn maximizes the diversity of members in the ensem-
ble and reduces the transferability of adversarial examples
among members in the ensemble by constraining the
gradient direction and the gradient magnitude of each
member.

• Extensive experiments have been conducted, and the
results show that the performance of the negative cor-
relation ensemble (NCEn) exceeds the state-of-the-art
ensemble-based defense strategies. What’s more, the ex-
perimental results also show that NCEn can effectively
reduce the transferability of adversarial examples as well
as improving the diversity and robustness of the ensem-
ble.

The rest of this paper is organized as follows. Section II
introduces related work. We then introduce our approach in
Section III. Section IV presents our experimental details and
results. A brief conclusion of this paper is given in Section V.

II. RELATED WORK

In this section, we first introduce the concept of adversarial
examples as well as the generation and defense algorithms.

After this, we will introduce the adversarial robustness of
ensembles and negative correlation learning, respectively.

A. Adversarial Examples

In 2014, Szegedy et al. [7] have proposed the concept of
adversarial examples. Given a trained classifier f(·) and a
clean input sample x with the corresponding label y, the
adversarial example x′ = x + ε satisfies f(x′) 6= y, where
ε is a subtle perturbation that is not easily detected by human
eyes.

Numerous adversarial examples generation algorithms have
been proposed in past years [7]–[11], [14], [28], [29]. Goodfel-
low et al. [8] have proposed the FGSM algorithm based on the
linear hypothesis of the high-dimensional space of deep neural
networks. The advantage of FGSM is that it can generate
adversarial examples quickly, and can be applied to a variety of
deep neural networks. The momentum iterative FGSM (MI-
FGSM) [14] is an iterative attack method based on FGSM.
By adding a momentum term to the iterative attack method,
the transferability of adversarial examples is improved. The
project Gradient Descent (PGD) [28] is another iterative attack
method based on FGSM. In each iteration process, the per-
turbation is clipped to the specified range to generate efficient
adversarial examples. In 2017, Kurakin et al. [9] have proposed
the basic iterative method (BIM). By limiting each pixel of the
adversarial example to be within the lp field of the original
example x, they constructed the adversarial examples in the
real scenarios. Compared to FGSM, BIM makes fewer changes
to the original sample and has better attack Performance.

In order to defend against the adversarial examples, a lot
of methods have been proposed, such as adversarial training,
networks modification, feature squeezing as well as using
additional networks [11], [19]–[23], [30]–[35]. Specifically,
the method of adversarial training improves the robustness of
the model by generating adversarial examples and updating
model parameters alternatively [7]–[10], [28]. In order to
keep the effectiveness, this method needs to use high-intensity
adversarial examples, and at the same time, the network should
have sufficient expressive power. Therefore, such method
requires a large amount of adversarial example training data,
so it is also called brute force adversarial training. In addition,
existing works show that adversarial training can help regu-
larize the models and mitigate overfitting [1], [36]. However,
these adversarial trained models still lack robustness to unseen
adversarial examples.

B. Adversarial Robustness of Ensembles

An efficient way to defend against adversarial examples is to
use an ensemble of deep neural networks [24]–[26], [37]. By
using different model structures, initial weights, and training
methods for different models can significantly improve the
diversity. Strauss et al. [38] have shown that neural networks
the ensemble can not only improve the prediction accuracy, but
also improve the robustness to adversarial examples. What’s
more, Tramèr et al. [39] have proposed to use the adversarial
training to enhance the adversarial robustness of an ensemble.
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Since the gradients of the models in the ensemble share
similar directions, an adversarial example which can fool
one model may also be capable to fool the others in the
ensemble. For this, Kariyappa et al. [25] have proposed
Gradient Alignment Loss (GAL) to improve the adversarial
robustness of the ensemble by considering the diversity of
gradient directions. Specifically, it focuses on training the en-
semble whose members have irrelevant loss functions by using
diversified training. Intuitively, GAL reduces the dimension of
adversarial subspace of the models through diversified train-
ing. However, GAL does not consider the optimal geometric
boundary for the diversification of gradient directions in the
ensemble, and does not balance the gradient magnitude of each
member in the ensemble. Based on this, Dabouei et al. [27]
have proposed gradient phase and magnitude regularization
(GPMR) [27]. The basic principle of GPMR is to increase the
lower bound of the adversarial perturbation that changes the
score of the classifier by considering the optimal geometric
boundary to diversify the gradient direction in the ensemble,
and to balance the gradient magnitude of the members, thereby
constructing the first-order defense interaction of the members
in the ensemble. However, GPMR does not fully consider the
interaction between members in the ensemble. In contrast, our
work builds a good ensemble defense system by considering
the interaction between members in the ensemble, thereby
improving the robustness of the ensemble.

C. Negative Correlation Learning

Negative correlation ensemble has been proposed by Liu
and Yao in 1999 [40], [41]. Liu and Yao [40] have pro-
posed a cooperative ensemble learning system (CELS), and
the purpose is to interactively and simultaneously train all
individual models in the ensemble in a single learning process
through negative correlation learning (NCL). Through negative
correlation learning, different models in the ensemble can learn
different features of the training set, so that the ensemble can
work more holistically. Theoretical and experimental results
show that NCL can promote the diversity of the models as
well as keeping a high prediction accuracy.

Liu et al. [42] also have tried to solve the problem of
the optimal number of neural networks in the ensemble on
the premise of maintaining the good interaction of individual
members in the ensemble through negative correlation learning
and evolutionary learning. Chan et al. [43] proposed NCCD,
which implemented negative correlation learning via correla-
tion corrected data. NCCD does not add penalty items in the
training process, but adds error related information to the train-
ing data for negative correlation learning. NCCD can reduce
the communication bandwidth between individual networks,
and can be applied to the ensemble of any type of network
structures. In addition, because NCCD does not modify the
error function of the network for negative correlation learning,
but modifies the training data for negative correlation learning,
it can accelerate the learning speed through parallel computing.

Wang et al. [44] proposed a new negative correlation learn-
ing algorithm AdaBoost.NC. The flexibility of AdaBoost is
used to overcome the shortcomings of NCL, such as sensitivity

to parameters setting and long training time, and the overfitting
problem of AdaBoost is solved by introducing diversity [45],
[46]. The experimental results show that AdaBoost.NC has
better generalization performance than NCCD, and the time
cost is significantly less than CELS and NCCD.

In this paper, for the first time, we propose a defense ap-
proach against adversarial examples by leveraging the negative
correlation method. We first make the gradient direction of
each member in the ensemble negatively correlated. Secondly,
we make the gradient magnitude of each member in the
ensemble negatively correlated with the average gradient mag-
nitude, such that help improve the diversity of the ensemble
and balance the gradient magnitude of each member in the
ensemble. The details will be given in the next section.

III. THE PROPOSED METHOD

The purpose of defense is to enable the classifier f give a
correct prediction on examples x′ which is with the adversarial
perturbation. The ensemble strategy exploits multiple trained
models to make decisions together. Due to the differences
in structures, initial weights and training methods, different
models could learn different decision boundaries. This means
that an adversarial example which can fool one model may
not be capable to fool the others. So the ensemble could have
better adversarial robustness compared to a single model.

In this section, we will show how negative correlation
theory can be utilized in ensemble training and how it can
be exploited to improve the adversarial robustness.

A. On Gradient Directions of Members

The gradient of the loss to the input x refers to a direction
where the directional derivative of the loss achieves a maxi-
mum along this direction, i.e., the loss changes fastest when
a perturbation ε is introduced along this direction. When the
members in the ensemble have different gradient directions,
we put the adversarial example x′ with perturbation ε along a
certain direction into the ensemble for prediction, and x′ could
significantly change only the loss function of classifiers with
gradient direction similar to ε, but not affect others.

We treat the mean value of the gradients of all members
as the gradient of the ensemble, which can be represented
by ∇Jensemble. The adversarial perturbation added along the
direction of ∇Jensemble can affect most members of the
ensemble. We use ∇Ji to represent the gradient of the ith

member with respect to input x. Firstly, we prompt the angle
between ∇Ji and ∇Jensemble negatively correlated with the
angle between ∇Jj (j 6= i) of other members and ∇Jensemble.
After negative correlation training, the gradient direction of
all members in the ensemble with respect to whole dataset
will be maximally different, which means that an adversarial
perturbation increasing the loss function of one member will
not absolutely increase the loss of other members.

In detail, we use cosine similarity (CS) to measure the
gradient angle between members, and it can be calculated as
Formula (1).

CS(∇Ji,∇Jj) =
< ∇Ji,∇Jj >
‖∇Ji‖2 · ‖∇Jj‖2

(1)
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The smaller the CS, the larger the angle between the
gradients, and the greater the diversity among the members.
This means that the loss of each member will not grow in
a positive correlation manner for a same adversarial perturba-
tion. Therefore, it is hard for an adversarial perturbation to fool
all members simultaneously. Meanwhile, the ensemble with
increased diversity is still capable to keep a high prediction
accuracy. The relevant regularization term can be expressed as
Formula (2).

Losscos = CS (∇Ji,∇Jensemble)

k∑
j 6=i

CS (∇Jj ,∇Jensemble)

(2)

∇Jensemble =
1

k

k∑
i=1

∇Ji (3)

Where∇Jensemble is the averaged gradients of all members,
k is the number of members, and ∇Ji is the gradient of the
ith member.

In the training process, the regularization term aims to
prompt the gradient direction of each member in the ensemble
negatively correlated with the others. From Fig. 1, where ∇Ji
indicates the model gradient of the ith member(i = 0, 1, 2),
and ∇Jensemble indicates averaged gradients of all members,
the follows can be observed:
• When

∑k
j 6=i CS (∇Jj ,∇Jensemble) is greater than zero,

the gradient directions of ∇Jj are closer to ∇Jensemble.
In such a situation, minimizing the negative correlation
formula (2) will result in a larger gradient angle between
∇Ji and ∇Jensemble.

• When
∑k

j 6=i CS (∇Jj ,∇Jensemble) is negative, the gra-
dient directions of ∇Jj is inconsistent with that of
∇Jensemble. In such a situation, minimizing the negative
correlation formula (2) will result in the gradient direction
of ∇Ji to approach the gradient direction of ∇Jensemble.

In both cases, the regularization term will help all members
train interactively, such that facilitates the maximization of the
gradient direction diversity.

We use CS as the regularization term for enhancing the
adversarial robustness, and the loss function can be expressed
as Formula (4), where CE is the mean of the cross-entropy
loss and λcos is the weight coefficient.

Loss = CE + λcosLosscos (4)

CE =
1

k

k∑
i=1

celoss (5)

The algorithm for calculating the regularization term of the
ith member on the gradient direction using negative correlation
is shown in Algorithm 1, where k is the number of members
in the ensemble. Firstly, it calculates the cosine similarity cos1
between the gradient of the ith member and the ensemble as
well as the sum of cosine similarity cos2 between the gradients
of the other members and the ensemble. After this, the negative
correlation coefficient of cos1 and cos2 are calculated as the

Figure 1: Improve the ensemble diversity from the view of
gradient direction; ∇Ji indicate the model gradient of the ith

member (i = 0, 1, 2), and ∇Jensemble indicate the ensemble
gradient

Algorithm 1 Calculating Losscos for the ith member

Require: Gradient of the ith member: ∇Ji; Gradient of other
members in the ensemble: ∇Jj(j 6= i); Ensemble gradient:
∇Jensemble; Number of models in the ensemble: k

Ensure: Regularization term of the ith member: Losscos
cos1← CS(∇Ji, ∇Jensemble)
cos2← 0;
for j ← 1 to k do

if j 6= i then
cos2← cos2 + CS(∇Jj , ∇Jensemble)

end if
end for
Losscos ← cos1 ∗ cos2
Return the regularization term: Losscos

regularization term Losscos of the ith member and will be
minimized in the training process.

B. On the Gradient Magnitudes of Members

The gradient magnitude represents the magnitude of the
change in the loss caused by the adversarial perturbation ε.
Adding an adversarial perturbation ε along the gradient direc-
tion will influence the loss more if there is a larger gradient
magnitude. In the white-box attack scenario, the attacker can
easily attack the classifiers with the largest gradient magnitude
on the original input. We use g to represent the mean value of
the gradient magnitudes of all members, and use ∇Ji as the
gradient of the ith member in the ensemble. According to the
negative correlation principle, we make the gradient magnitude
of the ith member and the ensemble gradient magnitude nega-
tively correlated with the gradient magnitude of other members
in the ensemble. After the training, the gradient magnitude of
all members in the ensemble will be negatively correlated.
This means that when the gradient magnitude of one member
in the ensemble decrease, the gradient magnitude of other
members will increase or decrease. However, no matter how
the gradient magnitude of a single member changes, after all
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members in the ensemble conduct simultaneous interactive
training through negative correlation, each member will get
the best gradient magnitude over dataset.

Therefore, we propose the second regularization term, which
is shown in Formula (6).

Lossnorm =
1

g2
(‖∇Ji‖2 − g)

k∑
j 6=i

(
‖∇Jj‖2 − g

)
(6)

g =
1

k

k∑
i=1

‖∇Ji‖2 (7)

Where g is the mean value of the gradient magnitudes of
all members, k is the number of members in the ensemble
and ∇Ji represents the gradient of the ith member. We use
the L2 norm of the gradient to calculate the gradient mag-
nitude of each member in the ensemble. By minimizing the
regularization term, the gradient magnitudes of all members in
the ensemble is negatively correlated, which means different
members can learn better over different features.

Figure 2: Improving the ensemble diversity from the view of
the gradient magnitude; ∇Ji indicates model gradients in the
ensemble (i = 0, 1, 2), and g indicates the mean value of the
gradient magnitudes of all members in the ensemble

As shown in Fig. 2, where g is the mean value of the
gradient magnitudes of all members in the ensemble, and there
must be some gradient magnitudes less than g, so it can be
inferred that the value of the regularization term will always
be negative. Based on this, we can further observe that:
• When

∑k
j 6=i

(
‖∇Jj‖2 − g

)
is greater than zero, ‖∇Ji‖2

is less than g. In such a situation, minimizing the negative
correlation formula (6) will result in the decease of the
gradient magnitude ‖∇Ji‖2.

• When
∑k

j 6=i

(
‖∇Jj‖2 − g

)
is negative, ‖∇Ji‖2 is greater

than g. In such a situation, minimizing the negative
correlation formula (6) will result in the increase of the
gradient magnitude ‖∇Ji‖2.

Considering all members are trained simultaneously, dif-
ferent members can learn different features over the training

dataset and have different gradient magnitudes on the same
input since it is not easy to always own very small gradient
magnitudes over the whole input space. Based on this, it can be
avoided that the adversaries attack the ensemble successfully
by attacking only a few models with larger gradient magnitude.

We use this to regularize the training for improving the
ensemble diversity and the loss function can be expressed as
Formula (8). Where CE is the cross-entropy loss and λnorm
is the weight coefficient.

Loss = CE + λnormLossnorm (8)

The algorithm for calculating the Lossnorm with negative
correlation is shown in Algorithm 2, where k is the number
of members in ensemble. Firstly, we calculate the difference
norm1 between the gradient magnitude of the ith member and
the mean value g as well as the difference norm2 between the
gradient magnitude of other members in the ensemble and the
mean value g. After this, according to the negative correlation
method, the Lossnorm of norm1 and norm2 is calculated
and treated as a regularization term for the training.

Algorithm 2 Calculating Lossnorm for the ith member

Require: Gradient of the ith member: ∇Ji; Gradient of other
members in the ensemble: ∇Jj(j 6= i); the mean value of
the gradient magnitude: g

Ensure: Regularization term: Lossnorm
norm1← (‖∇Ji‖2 − g) /g
norm2← 0
for j ← 1 to k do

if j 6= i then
norm2← norm2 + (‖∇Jj‖2 − g)/g

end if
end for
Lossnorm ← norm1 ∗ norm2
Return the regularization term: Lossnorm

C. The Proposed NCEn

We have proposed two methods to increase the adversarial
robustness, however, we find that using each method alone is
still limites in performance.

Specifically, if only considering the influence of the gradient
direction of each member in the ensemble, an adversary can
attack a few members with large gradient magnitudes to make
the ensemble predict incorrectly. While if only considering
the influence of the gradient magnitude of each member in
the ensemble, there could be a phenomenon that the gradient
directions of all members are similar. At this time, the loss of
each member in the ensemble will grow positively corrected,
i.e, adversarial examples generated along the gradient direction
can make most members of the ensemble predict incorrectly.
So that the defense performance of the ensemble is similar to
that of a single model, which is not robust enough.

Therefore, we will consider both the influence of member
gradient directions and the influence of member gradient
magnitudes, and use two regularization terms simultaneously
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to improve the adversarial robustness. The loss function is
shown in Formula (9), where CE is cross-entropy loss and
the combined regularization term NCE can be calculated by
Formula (10).

Loss = CE +NCE (9)

NCE =
1

k

k∑
i=1

(λnormLossnorm + λcosLosscos) (10)

The specific implementation of the ensemble training pro-
cess is shown in Algorithm 3. In each epoch, we first get the
predicted value pred of each member in the ensemble. Next,
we use the predicted value pred and the real label label to
calculate the cross entropy loss celoss of each member in the
ensemble. Then, we calculate the mean value CE of the cross-
entropy loss of all members in the ensemble. Finally, we use
Formula (10) to calculate the regularization term NCE, and
by which we can update the parameters of all members.

Algorithm 3 Negative Correlation Ensemble

Require: Dataset: X; Correct label for dataset X: label
Ensure: Trained ensemble

Get a list of all the members in ensemble: fi(i = 1, 2, ..., k)
for epoch← begin epoch to end epoch do

for model← f1 to fk do
pred← model(X)
celoss ← CE(pred, label)

end for
Calculate CE ← 1

k

∑k
i=1 celoss

Get the value of the regularization term: NCE
Back propagation using the sum of CE and NCE
Update the model parameters of each model

end for

IV. EXPERIMENTS

In this section, we conduct experiments on the FashionM-
NIST and CIFAR-10 datasets. We first give our experimental
settings. Secondly, we compare the adversarial robustness of
NCEn with different ensemble defense approaches. Further-
more, we find that NCEn is capable to reduce the trans-
ferability of adversarial examples, which proves that NCEn
leverages the interactions of different members to improve
the adversarial robustness. The source codes of this work are
available at https://github.com/MiLabHITSZ/2022ZhangNCEn

A. Experimental Setup

In our experiments, we use three ensemble defense strate-
gies as baselines to evaluate the performance of NCEn. The
first one is the ensemble training without any regularization
term, which λcos = λnorm = 0. The second one is to use GAL
for diversified training to improve the adversarial robustness of
the ensemble [25]. The third one is the GPMR proposed by
Dabouei et al. [27], which constructs the first-order defense
interaction of the members in the ensemble to improve the
adversarial robustness of the ensemble. Both GAL and GPMR
are state-of-the-art ensemble defense strategies.

Table I: Ensemble model structures. k = (3, 4, 5)

Name Ensemble Structures

Ensemble1 k ∗ResNet20
Ensemble2 k ∗ResNet26
Ensemble3 k ∗ResNet32

Ensemble4 (k − b k−1
2
c) ∗ ResNet20 + b k−1

2
c ∗

ResNet26 + 1 ∗ResNet32

In our experiments, we use k = 3, 4, 5 models in the
ensemble respectively for analyzing the impact of the number
of members, as shown in Table I. We evaluate the adversarial
robustness of the ensemble on the FashionMNIST and CIFAR-
10 datasets. For GAL, the coefficient of the regularization term
is set to 0.5. For GPMR, λdiv of FashionMNIST is set to 0.1,
λdiv of CIFAR-10 is set to 0.04, and λeq is set to 10 for all
datasets.

We train the ensemble with Adam optimizer [47]. The initial
learning rate is set to 10−3, and decays with the factor of 0.1
every 15 epochs until reaching the final learning rate 10−5. We
train 40 epochs on FashionMNIST, and 60 epochs on CIFAR-
10. In the experiments, the batch size of all training processes
is set to 64. We set λcos = 0.02 and λnorm = 0.02 for
FashionMNIST, λcos = 0.06 and λnorm = 0.04 for CIFAR-
10.

In FashionMNIST, we use random cropping, and in CIFAR-
10 we use random horizontal flipping and random cropping. In
addition, we add a new dataset Dnoise to the dataset D, which
is generated by the perturbation from the truncated normal
distribution: N(µ = 0, σ = ε/2), ε = 0.3 for FashionMNIST
and ε = 0.09 for CIFAR-10. We use the synthetic data
set D + Dnoise to train the ensemble. Such an operation
can effectively distort the useless high-frequency features and
prompt the ensemble to avoid overfitting during the training.

We use test accuracy of clean examples (ACE) and test
accuracy of adversarial examples (AAE) as the evaluation
metrics. AAE refers to the ratio that a new example set, which
is constructed by adding adversarial perturbations to the clean
examples, can still be correctly classified by the ensemble. We
use the averaged CE loss of all models in the ensemble as
the objective function of the attack.

B. Defense Performance

We compare the defense performance of NCEn with differ-
ent defense methods, as shown in Tables II∼IV, and the best
defense results are bolded. We use several powerful white box
attack methods to test the defense performance of ensembles,
including the fast gradient sign method (FGSM) [8], the
momentum iterative fast gradient sign method (MI-FGSM)
[14], projected gradient descent (PGD) [28], the basic iterative
method (BIM) [9]. The specific settings of attack methods are
as follows. FGSM adds a perturbation with a step length of ε
in the gradient direction. For MI-FGSM, each step size is set
to 0.01, while keeping the maximum distortion always within
ε of the initial point. For PGD, the number of iterations is set
to 40, and the maximum perturbation and single-step attack
steps are both ε. For BIM, the number of iterations is set to 10,

https://github.com/MiLabHITSZ/2022ZhangNCEn
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and the maximum perturbation and single-step attack steps are
both ε. All attack methods are implemented by AdveTorch.

When the number of models in the ensemble is 3, the results
of different approaches on dataset FashionMNIST/CIFAR-10
are shown in Table II. Compared with BL, GAL and GPMR,
the adversarial robustness of NCEn is significantly improved.
When we change the ensemble model structure to Ensemble2,
Ensemble3 and Ensemble4 respectively, the ACE of GAL
drops below 0.8. At this time, the AAE of GAL is unworthy of
consideration. Such AAE are marked with gray background as
well as the corresponding ACE Unlike GAL, NCEn can not
only maintain high ACE in all ensemble model structures,
but also achieve better adversarial robustness. Specifically,
on FashionMNIST, except that FGSM and MI-FGSM use a
large attack step, NCEn has better adversarial robustness in
all ensemble structures. AAE has the highest improvement of
0.14 on Ensemble4 and MI-FGSM (ε = 0.1). On CIFAR-10,
the adversarial robustness of NCEn is better or very close to
the existing best baselines, and AAE can be improved by 0.11
at most.

When the number of models in the ensemble is
4 or 5, the results of different defense strategies on
FashionMNIST/CIFAR-10 are shown in Tables III∼IV. The
experimental results are consistent with the previous ones, and
NCEn still has better adversarial robustness. Specifically, when
the number of models in the ensemble is 4, the AAE score
of NCEn can be increased by 0.12 on FashionMNIST. On
CIFAR-10, the AAE of NCEn is higher than all baselines,
and the highest AAE can be improved by 0.12. When the
number of models in the ensemble is 5, the AAE of NCEn
can be increased by 0.12 on FashionMNIST. On CIFAR-10,
the highest AAE of NCEn can be improved by 0.11.

C. Transferability Between Members

Transferability refers to the success rate of being able to
attack other models at the same time when an adversarial
example is designed to attack a particular model. The less
transferable the adversarial example is, the better the diversity
of the models

Therefore, we can use the transferability of adversarial
examples between different models to evaluate the similarity
between members in the ensemble. We perform transferability
experiments using PGD [28] and MI-FGSM [14], which
MI-FGSM performs well in black-box attacks and PGD is
the most powerful first-order attack algorithm. We generate
adversarial examples for each member, and then evaluate their
transferability on other members by calculating AAE. The
perturbation magnitude of all attacks is set to ε = 0.05,
we use Ensemble4 in Table I to conduct the transferability
experiments, and the results are shown in Fig. 3.

As shown in Fig. 3, we use the heat map of the confusion
matrix to show transferability. The ith row and jth column in
the heat map represents the test accuracy of the adversarial
examples on the jth member, while the adversarial examples
are generated over the ith member. When the values of other
positions in the confusion matrix are close to those of the
diagonal, it means that the adversarial examples generated

by the ith model can successfully attack other models in the
ensemble. The closer the values in the confusion matrix are,
the higher the transferability of the adversarial examples and
the higher the similarity between members in the ensemble.
On the contrary, it means that the diversity among members in
the ensemble is higher, and the ensemble has better adversarial
robustness. It can be seen from the confusion matrix that the
transferability of adversarial examples in NCEn ensemble is
poor, which indicates that NCEn has better diversity, such that
it can provide better defense interactions for members.

D. Parameter Analysis

From the experiment, we can find that the weights of the
regularization terms will affect the defense performance. In
order to explore the relationship between the weights and the
defense performance, we summarize the experimental results
and plot the contour heat map on λcos and λnorm (see Figure
4). We use the product of ACE and AAE (which is averaged
over four attack methods) in Table II to represent the intensities
of the heat map. The larger the intensity, the higher the attack
success rate. We use Ensemble1 in Table table I and test on
CIFAR-10. From Figure 4, we can get that the best results are
obtained when we set λcos = 0.06 and λnorm = 0.04.

V. CONCLUSION

In this paper, we propose a practical and feasible adver-
sarial examples defense scheme based on negative correlation
ensemble, which is named NCEn. We use the negative correla-
tion principle to make the gradient direction and gradient mag-
nitude of each member in the ensemble negatively correlated,
and to train all members in the ensemble interactively and
simultaneously. The purpose of negative correlation training
in NCEn is to produce the best defense performance for
the whole ensemble. Experiments have shown that NCEn
can reach a better adversarial robustness than other ensemble
defense schemes. Then, we demonstrate that NCEn can reduce
the transferability of adversarial examples between members
in the ensemble through the confusion matrix. Finally, we
discuss the influence of hyperparameters ∇λcos and ∇λnorm
on defense performance, and give the best settings of hyper-
parameters. In general, we can conclude that NCEn is capable
to improve the diversity and the robustness of the ensemble
by making the gradient direction and gradient magnitude
negatively correlated. However, for a given task, how to find
the optimal number of the models in the ensemble is still a
question. Many models could not be better. In the future, we
will study how to automatically set the optimal number of the
models in the ensemble.
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Table IV: the classification accuracy of four ensemble defense strategies adversarial examples on FashionMNIST and CIFAR-10,
when model number is 5. ACE means accuracy of clean examples.

Ensemble Attack Setting FashionMNIST Setting CIFAR-10
BL GAL GPMR NCEn BL GAL GPMR NCEn

Ensemble1

ACE 0.9315 0.8998 0.9247 0.9235 ACE 0.8694 0.8355 0.8573 0.8488

FGSM ε=0.1 0.8446 0.8546 0.8330 0.8619 ε=0.03 0.6473 0.7655 0.6100 0.7248
ε=0.3 0.6265 0.7482 0.7073 0.6248 ε=0.09 0.5258 0.6266 0.4875 0.6054

MI-FGSM ε=0.1 0.6333 0.6572 0.6038 0.6832 ε=0.03 0.1808 0.0418 0.1564 0.2611
ε=0.3 0.4813 0.3860 0.4543 0.4092 ε=0.09 0.0512 0.0021 0.0422 0.0919

PGD ε=0.1 0.6673 0.6694 0.6053 0.7386 ε=0.01 0.5365 0.5368 0.4934 0.6183
ε=0.15 0.5834 0.5660 0.5211 0.6794 ε=0.02 0.3818 0.2794 0.3378 0.4687

BIM ε=0.1 0.6809 0.6984 0.6350 0.7524 ε=0.01 0.5845 0.5770 0.5273 0.6528
ε=0.15 0.5978 0.5965 0.5578 0.6868 ε=0.2 0.4324 0.3244 0.3909 0.5192
ACE 0.9344 0.8858 0.9256 0.9216 ACE 0.8687 0.8293 0.8627 0.8599

Ensemble2

FGSM ε=0.1 0.8358 0.8418 0.8316 0.8534 ε=0.03 0.6573 0.7886 0.6080 0.6582
ε=0.3 0.6210 0.7448 0.6970 0.6392 ε=0.09 0.5272 0.6598 0.4838 0.5256

MI-FGSM ε=0.1 0.6268 0.6510 0.6165 0.6866 ε=0.03 0.1871 0.1110 0.1473 0.2061
ε=0.3 0.4834 0.4940 0.4571 0.4326 ε=0.09 0.0582 0.0101 0.0426 0.0695

PGD ε=0.1 0.6702 0.6605 0.6030 0.7501 ε=0.01 0.5479 0.6049 0.4913 0.5759
ε=0.15 0.5810 0.5705 0.5138 0.6801 ε=0.02 0.4027 0.3867 0.3383 0.4224

BIM ε=0.1 0.6865 0.6816 0.6366 0.7640 ε=0.01 0.5929 0.6386 0.5249 0.6186
ε=0.15 0.5893 0.5908 0.5505 0.6902 ε=0.2 0.4393 0.4382 0.3841 0.4603
ACE 0.9339 0.8082 0.923 0.9228 ACE 0.8744 0.8286 0.8604 0.8532

Ensemble3

FGSM ε=0.1 0.8435 0.8603 0.8319 0.8809 ε=0.03 0.6531 0.8204 0.6090 0.7535
ε=0.3 0.6292 0.7216 0.6821 0.6395 ε=0.09 0.5370 0.6778 0.4894 0.6480

MI-FGSM ε=0.1 0.6417 0.6471 0.6159 0.7225 ε=0.03 0.1901 0.1776 0.1471 0.3088
ε=0.3 0.5023 0.3957 0.4596 0.4531 ε=0.09 0.0564 0.0359 0.0399 0.1159

PGD ε=0.1 0.6789 0.6978 0.6087 0.7838 ε=0.01 0.5489 0.6438 0.4995 0.6431
ε=0.15 0.6085 0.5673 0.5126 0.7207 ε=0.02 0.4055 0.4440 0.3410 0.5206

BIM ε=0.1 0.6941 0.7024 0.6343 0.7929 ε=0.01 0.5933 0.6751 0.5253 0.6751
ε=0.15 0.6106 0.5857 0.5510 0.7197 ε=0.2 0.4486 0.4930 0.3916 0.5672
ACE 0.9332 0.9015 0.9244 0.9240 ACE 0.8705 0.8370 0.8616 0.8592

Ensemble4

FGSM ε=0.1 0.8423 0.8293 0.8370 0.8631 ε=0.03 0.6464 0.8016 0.6001 0.6646
ε=0.3 0.6255 0.7114 0.6966 0.6582 ε=0.09 0.5236 0.7076 0.4821 0.5471

MI-FGSM ε=0.1 0.6279 0.5801 0.6147 0.6889 ε=0.03 0.1754 0.1144 0.1555 0.2174
ε=0.3 0.4813 0.3207 0.4709 0.5001 ε=0.09 0.0454 0.0186 0.0470 0.0690

PGD ε=0.1 0.6677 0.6207 0.6049 0.7436 ε=0.01 0.5408 0.5887 0.4932 0.5861
ε=0.15 0.5903 0.4892 0.5209 0.6814 ε=0.02 0.3885 0.3778 0.3398 0.4306

BIM ε=0.1 0.6800 0.6495 0.6380 0.7486 ε=0.01 0.5808 0.6271 0.5218 0.6228
ε=0.15 0.5970 0.5196 0.5553 0.6879 ε=0.2 0.4279 0.4344 0.3844 0.4696
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