Skip to main content

Flow Prediction via Multi-view Spatial-Temporal Graph Neural Network

  • Conference paper
  • First Online:
  • 563 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1744))

Abstract

In recent years, the problem of traffic flow prediction in the urban environment has been widely concerned. However, the traffic flow prediction has not been effectively solved for the next period between the origin-destination region pair. In addition, multiple spatial-temporal traffic dependencies exist between the origin-destination area pairs. In this paper, three types of traffic dependencies between origin-destination region pairs were considered: the same origin dependency, same destination dependency, and transfer to dependency. This paper proposed a spatial-temporal forecasting framework for traffic flow prediction between pairs of urban regions with multi-view graphs. This work mainly considered the construction of spatial-temporal deep learning networks under three kinds of multi-view graphs. Finally, the prediction results under the three dependence relationships are fused to get the final prediction results. Comprehensive experiments on two datasets showed that the proposed framework has very high prediction performance, and outperforms the baseline model by more than 6%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www1.nyc.gov/site/tlc/about/tlc-triprecord-data.

  2. 2.

    https://www.capitalbikeshare.com/system-data.

References

  1. Abadi, A., Rajabioun, T., Ioannou, P.A.: Traffic flow prediction for road transportation networks with limited traffic data. IEEE Trans. Intell. Transp. Syst. 16(2), 653–662 (2015). https://doi.org/10.1109/TITS.2014.2337238

    Article  Google Scholar 

  2. Ali, A., Zhu, Y., Zakarya, M.: Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction. Neural Netw. 145, 233–247 (2022). https://doi.org/10.1016/j.neunet.2021.10.021

    Article  Google Scholar 

  3. Cascetta, E.: Estimation of trip matrices from traffic counts and survey data: a generalized least squares estimator. Transp. Res. Part B Methodol. 18(4), 289–299 (1984). https://doi.org/10.1016/0191-2615(84)90012-2

    Article  Google Scholar 

  4. Djenouri, Y., Belhadi, A., Srivastava, G., Lin, J.C.W.: Hybrid graph convolution neural network and branch-and-bound optimization for traffic flow forecasting. Futur. Gener. Comput. Syst. 139, 100–108 (2023). https://doi.org/10.1016/j.future.2022.09.018

    Article  Google Scholar 

  5. Fan, Z., Song, X., Shibasaki, R., Adachi, R.: Citymomentum: an online approach for crowd behavior prediction at a citywide level. In: Mase, K., Langheinrich, M., Gatica-Perez, D., Gellersen, H., Choudhury, T., Yatani, K. (eds.) Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2015, Osaka, Japan, 7–11 September 2015, pp. 559–569. ACM (2015). https://doi.org/10.1145/2750858.2804277

  6. Hoang, M.X., Zheng, Y., Singh, A.K.: FCCF: forecasting citywide crowd flows based on big data. In: Ravada, S., Ali, M.E., Newsam, S.D., Renz, M., Trajcevski, G. (eds.) Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS 2016, Burlingame, California, USA, 31 October–3 November 2016, pp. 6:1–6:10. ACM (2016). https://doi.org/10.1145/2996913.2996934

  7. Jiang, W., Luo, J.: Graph neural network for traffic forecasting: a survey. Expert Syst. Appl. 207, 117921 (2022). https://doi.org/10.1016/j.eswa.2022.117921

    Article  Google Scholar 

  8. Kulshreshtha, M., Nag, B., Kulshrestha, M.: A multivariate cointegrating vector auto regressive model of freight transport demand: evidence from Indian railways. Transp. Res. Part A Policy Pract. 35(1), 29–45 (2001). https://doi.org/10.1016/S0965-8564(99)00046-4

    Article  Google Scholar 

  9. Lin, C.H., Lin, Y.C., Tang, P.W.: ADMM-ADAM: a new inverse imaging framework blending the advantages of convex optimization and deep learning. IEEE Trans. Geosci. Remote Sens. 60(1), 1–16 (2022). https://doi.org/10.1109/TGRS.2021.3111007

    Article  Google Scholar 

  10. Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G.G., Tan, K.C.: A survey on evolutionary neural architecture search. IEEE Trans. Neural Netw. Learn. Syst. 1–21 (2021). https://doi.org/10.1109/TNNLS.2021.3100554

  11. Liu, Z., Liu, Z., Fu, X.: Dynamic origin-destination flow prediction using spatial-temporal graph convolution network with mobile phone data. IEEE Intell. Transp. Syst. Mag. 14(5), 147–161 (2022). https://doi.org/10.1109/MITS.2021.3082397

    Article  Google Scholar 

  12. Liu, Z., Zhang, R., Wang, C., Xiao, Z., Jiang, H.: Spatial-temporal conv-sequence learning with accident encoding for traffic flow prediction. IEEE Trans. Netw. Sci. Eng. 9(3), 1765–1775 (2022). https://doi.org/10.1109/TNSE.2022.3152983

    Article  Google Scholar 

  13. Peng, Z., Huang, X.: Spatial-temporal transformer network with self-supervised learning for traffic flow prediction. In: Sioutis, M., Long, Z., Stell, J.G., Renz, J. (eds.) Proceedings of the 1st International Workshop on Spatio-Temporal Reasoning and Learning (STRL 2022) co-located with the 31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence (IJCAI 2022, ECAI 2022), Vienna, Austria, 24 July 2022. CEUR Workshop Proceedings, vol. 3190. CEUR-WS.org (2022). http://ceur-ws.org/Vol-3190/paper1.pdf

  14. Scellato, S., Musolesi, M., Mascolo, C., Latora, V., Campbell, A.T.: NextPlace: a spatio-temporal prediction framework for pervasive systems. In: Lyons, K., Hightower, J., Huang, E.M. (eds.) Pervasive 2011. LNCS, vol. 6696, pp. 152–169. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21726-5_10

    Chapter  Google Scholar 

  15. Shang, P., Liu, X., Yu, C., Yan, G., Xiang, Q., Mi, X.: A new ensemble deep graph reinforcement learning network for spatio-temporal traffic volume forecasting in a freeway network. Digit. Signal Process. 123, 103419 (2022). https://doi.org/10.1016/j.dsp.2022.103419

    Article  Google Scholar 

  16. Singh, N., Nath, R., Singh, D.B.: Splice-site identification for exon prediction using bidirectional LSTM-RNN approach. Biochem. Biophys. Rep. 30, 101285 (2022). https://doi.org/10.1016/j.bbrep.2022.101285

    Article  Google Scholar 

  17. Song, X., Zhang, Q., Sekimoto, Y., Shibasaki, R.: Prediction of human emergency behavior and their mobility following large-scale disaster. In: Macskassy, S.A., Perlich, C., Leskovec, J., Wang, W., Ghani, R. (eds.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, New York, NY, USA, 24–27 August 2014, pp. 5–14. ACM (2014). https://doi.org/10.1145/2623330.2623628

  18. Sun, J., Zhang, J., Li, Q., Yi, X., Liang, Y., Zheng, Y.: Predicting citywide crowd flows in irregular regions using multi-view graph convolutional networks. IEEE Trans. Knowl. Data Eng. 34(5), 2348–2359 (2022). https://doi.org/10.1109/TKDE.2020.3008774

    Article  Google Scholar 

  19. van Maasakkers, L., Fok, D., Donkers, B.: Next-basket prediction in a high-dimensional setting using gated recurrent units. Expert Syst. Appl. 118795 (2022). https://doi.org/10.1016/j.eswa.2022.118795

  20. Wang, X., Kang, Y., Hyndman, R.J., Li, F.: Distributed ARIMA models for ultra-long time series. Int. J. Forecast. (2022). https://doi.org/10.1016/j.ijforecast.2022.05.001

    Article  Google Scholar 

  21. Wang, Y., Zeng, Z.: Overview of data-driven solutions. In: Wang, Y., Zeng, Z. (eds.) Data-Driven Solutions to Transportation Problems, pp. 1–10. Elsevier (2019). https://doi.org/10.1016/B978-0-12-817026-7.00001-1

  22. Wu, P., Li, X., Ling, C., Ding, S., Shen, S.: Sentiment classification using attention mechanism and bidirectional long short-term memory network. Appl. Soft Comput. 112, 107792 (2021). https://doi.org/10.1016/j.asoc.2021.107792

    Article  Google Scholar 

  23. Xue, Y., Wang, Y., Liang, J., Slowik, A.: A self-adaptive mutation neural architecture search algorithm based on blocks. IEEE Comput. Intell. Mag. 16(3), 67–78 (2021). https://doi.org/10.1109/MCI.2021.3084435

    Article  Google Scholar 

  24. Yan, B., Wang, G., Yu, J., Jin, X., Zhang, H.: Spatial-temporal Chebyshev graph neural network for traffic flow prediction in IoT-based its. IEEE Internet Things J. 9(12), 9266–9279 (2022). https://doi.org/10.1109/JIOT.2021.3105446

    Article  Google Scholar 

  25. Yan, Z., Peng, R., Wang, Y., Li, W.: Soft-self and hard-cross graph attention network for knowledge graph entity alignment. Knowl.-Based Syst. 231, 107415 (2021). https://doi.org/10.1016/j.knosys.2021.107415

    Article  Google Scholar 

  26. Yang, H.: Heuristic algorithms for the bilevel origin-destination matrix estimation problem. Transp. Res. Part B Methodol. 29(4), 231–242 (1995). https://doi.org/10.1016/0191-2615(95)00003-V

    Article  Google Scholar 

  27. Zhang, J., Li, S.: Air quality index forecast in Beijing based on CNN-LSTM multi-model. Chemosphere 308, 136180 (2022). https://doi.org/10.1016/j.chemosphere.2022.136180

    Article  Google Scholar 

  28. Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X.: DNN-based prediction model for spatio-temporal data. In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, SIGSPACIAL 2016. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2996913.2997016

  29. Zhang, J., Zheng, Y., Sun, J., Qi, D.: Flow prediction in spatio-temporal networks based on multitask deep learning. IEEE Trans. Knowl. Data Eng. 32(3), 468–478 (2020). https://doi.org/10.1109/TKDE.2019.2891537

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 72201275.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, S., Wang, Q., Wang, C., Liu, K., Ning, S., Xu, X. (2022). Flow Prediction via Multi-view Spatial-Temporal Graph Neural Network. In: Tan, Y., Shi, Y. (eds) Data Mining and Big Data. DMBD 2022. Communications in Computer and Information Science, vol 1744. Springer, Singapore. https://doi.org/10.1007/978-981-19-9297-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9297-1_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9296-4

  • Online ISBN: 978-981-19-9297-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics