Natural Computing Series
Founding Editor

Grzegorz Rozenberg

Series Editors

Thomas Bick®, Natural Computing Group-LIACS, Leiden University, Leiden,
The Netherlands

Lila Kari, School of Computer Science, University of Waterloo, Waterloo, ON,
Canada

Susan Stepney, Department of Computer Science, University of York, York, UK

https://orcid.org/0000-0001-6768-1478

Scope

The Natural Computing book series covers theory, experiment, and implementations
at the intersection of computation and natural systems. This includes:

e Computation inspired by Nature: Paradigms, algorithms, and theories
inspired by natural phenomena. Examples include cellular automata, simulated
annealing, neural computation, evolutionary computation, swarm intelligence,
and membrane computing.

e Computing using Nature-inspired novel substrates: Examples include
biomolecular (DNA) computing, quantum computing, chemical computing,
synthetic biology, soft robotics, and artificial life.

e Computational analysis of Nature: Understanding nature through a compu-
tational lens. Examples include systems biology, computational neuroscience,
quantum information processing.

José Raul Romero - Inmaculada Medina-Bulo -
Francisco Chicano
Editors

Optimising the Software
Development Process
with Artificial Intelligence

@ Springer

Editors

José Rail Romero Inmaculada Medina-Bulo
Department of Computer Science Department of Computer Science
and Numerical Analysis and Engineering

University of Cérdoba University of Cadiz

Cérdoba, Cérdoba, Spain Puerto Real, Cadiz, Spain

Francisco Chicano

ITIS Software

Department of Languages and Computing
Sciences

University of Malaga

Mailaga, Mdlaga, Spain

ISSN 1619-7127

Natural Computing Series

ISBN 978-981-19-9947-5 ISBN 978-981-19-9948-2 (eBook)
https://doi.org/10.1007/978-981-19-9948-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Singapore Pte Ltd. 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://orcid.org/0000-0002-4550-6385
https://orcid.org/0000-0003-1259-2990
https://orcid.org/0000-0002-7543-2671
https://doi.org/10.1007/978-981-19-9948-2

Foreword

Optimisation has really taken off as an area of research, in general, not just in
the software engineering community, since the 1940s. However, we can trace the
origins of software optimisation right back to the very birth of software itself, with
Ada Lovelace’s prescient comments on the nature of software and the need for its
optimisation. That is, 180 years ago, she wrote:

In almost every computation a great variety of arrangements for the succession of the
processes is possible, and various considerations must influence the selection amongst them
for the purposes of a Calculating Engine. One essential object is to choose that arrangement
which shall tend to reduce to a minimum the time necessary for completing the calculation.

This is an extract from “Note D” of “Sketch of the Analytical Engine Invented by
Charles Babbage” by Ada Augusta Lovelace, 1842. It is surely the first instance of
any author writing about the need to improve software execution performance by
optimising the expression of the computation itself: optimising the program.

The application of meta heuristic search to software optimisation dates back to
the 1970s, but has really taken off in the last two decades with the advent of the field
that has come to be known as “Search-Based Software Engineering” (SBSE). The
interest in optimisation techniques and evolutionary computation as a vehicle for
softer optimisation rendered the software engineering community highly receptive
to artificial intelligence techniques more generally. Recent breakthroughs in machine
learning have further stimulated software engineers’ interest in artificial intelligence
in all of its forms and many applications.

Artificial intelligence techniques have been used to optimise almost every kind
of engineering artefact and the processes by which they are made, right across the
spectrum of engineering disciplines, including mechanical, biological, chemical, and
even social engineering disciplines. Nevertheless, it is in software engineering that
these techniques find a uniquely well-fitted potential in their application: Not only is
the engineering artefact optimised using Al techniques but also the Al techniques are,
themselves, implemented in the same engineering material—software. This opens up
possibilities for self-application, and, with that, the potential for continuous, dynamic
adaptive optimisation in deployed software environments.

vi Foreword

I firmly believe that a deeper understanding of the nature of optimisation and its
applications to software engineering will yield many more insights into the nature
of optimisation itself and also, in so doing, will shed further light on the specific
properties of software as an exciting (arguably the most exciting, and certainly the
most peculiar) engineering material with which our species has yet worked.

The foundational nature of optimisation has led not only to an explosion of
research on Search-Based Software Engineering but also to widespread uptake of
computational search as a practical and flexible tool for software engineering opti-
misation. Most notably, techniques associated with software testing and repair have
found their way into widespread industrial practice in many companies, both large
and small. This impact has been felt by almost every user of the Internet, through
applications at companies such as Meta, Google, and Microsoft. Currently, approxi-
mately 2.9 billion people are running software (consisting of tens of millions of lines
of code) on smartphones. They are running software that has been automatically
fixed by computational search techniques that automatically found fixes for bugs
that were automatically detected by test cases that were, themselves, automatically
designed by computational search.

This is but one recent example of the application of search-based software engi-
neering to testing and bug fixing, and we can be sure that this is just the beginning.
We are witnessing the early development of a fundamentally new approach to soft-
ware engineering in which artificial intelligence and human intelligence combine to
optimise software systems and the processes by which they are produced. Our grand-
children will surely consider the idea that the word “programmer” refers exclusively
to a human as being just as quaint and anachronistic as we, today, would consider the
view of our nineteenth-century engineering forebearers, who thought that the word
“computer” would naturally and solely only ever refer to a human.

Much of the overall body of work on software optimisation has focused on soft-
ware products, such as optimisation of the code itself, and also documentation, design
diagrams, and test suites. However, optimisation has also been applied to software
engineering processes. It is this set of related application areas that forms the concern
of this excellent compendium of work on optimising software development processes
with artificial intelligence.

In this single volume, the reader will find many aspects of the overall software
development life cycle tackled using optimisation, from the elicitation of require-
ments and systems modelling through to development and on to deployment (e.g.
cloud-based deployment) and on-going maintenance. These are the processes of most
interest and importance to practising software engineers, and form the foundations
for multiple research disciplines within the overall body of work on software engi-
neering. The reader will also find work on optimising the overall management of
processes and on developer productivity assistance (such as code completion) as
well as work on software testing.

The chapters in this book have been written by leading researchers in the field
of software process optimisation using Al techniques. The collection into a single
volume provides an overview and introduction to an exciting field of engineering
optimisation, with many practical applications and challenges for further research.

Foreword vii

To further support practitioners and researchers from the software engineering
community, seeking to deploy these techniques, the final chapters in this book provide
foundational tutorial work on meta heuristics and machine learning. This ensures that
the book is useful for researchers and practitioners alike. The interested reader, who
wants to follow up further having read the book, will also find many other surveys
and tutorials available online.

London, UK Mark Harman
July 2022

Preface

A software development project is complex, and poses constant challenges to the
professionals who supervise, plan, design, analyse, develop, and maintain it. When
we think of a software project, we must think of all its phases and activities: both
in those phases referring to the planning and control of the engineering project,
and in the phases of the development process itself, from the specification of the
requirements and the architectural design to the testing, refactoring, and maintenance
of the software.

In recent years, there has been a clear interest in automating and providing support
to the professionals, with the goal of reducing the effort, time, cost, and risk of the
different phases of a software project. To this end, initiatives related to the use of
artificial intelligence (AI) for optimising these tasks have been tested for decades,
from expert systems to search and optimisation techniques to machine learning.
The editors of this volume have been working for more than 20 years in software
engineering (SE), including the application of Al techniques for the optimisation of
the different phases of the software life cycle. And we must recognise that during
this time great advances have been made, but the most important comes from the
industry itself, which acknowledges the need to apply techniques that improve its
software engineering process and demands solutions for it. Al-enhanced software
engineering or AI4SE (artificial intelligence for software engineering) was born.

An important factor is the popularisation of general-purpose tools among the
developer community based on these techniques. Examples of these applications are
the GitHub Copilot intelligent assistant, which had a great impact on the community
by making visible and tangible the pros and cons of using Al for software develop-
ment assistance. Other development assistant tools such as DeepMind AlphaCode or
OpenAl Codex have also attracted the attention of professionals in this field—a field
that had already been generating assistant tools in academia for some time, such as
EvoSuite for the automatic generation of test suites.

The discussions generated about these tools, their internal foundations, their
scope, and practicability, as well as the near future of AI4SE research and devel-
opment have motivated the need for a volume like this. With this book, we aim to

< Preface

provide Information Technology (IT) professionals (practitioners, developers, soft-
ware engineers, or managers) as well as advanced graduate and Ph.D. students with
a practical introduction to the use of Al techniques to improve and/or optimise the
different phases of the software development process, from the initial project plan-
ning to the latest deployment. Notice that Al is a broad term, and the book is intended
to cover it from different perspectives: optimisation and search algorithms applied to
software engineering (also known as Search-Based Software Engineering, SBSE),
machine learning, and pattern mining in software analytics, mining software reposi-
tories (MSR), natural language processing (NPL), etc. The Al solutions for SE used
throughout the book are explained in a didactic way to provide the reader with a
sufficient basis for a complete understanding of its content.

For producing this contributed volume, we have relied on renowned authors,
highly experienced in each of the areas of the book. We first divided the project
according to the classic phases of software project development and studied how Al
had been used for the optimisation and improvement of each of them. The authors
were invited not only to write descriptively about the state of AI4SE in their specific
domain but also to describe real use cases and to develop practical and reproducible
examples to enable the reader to understand, execute, and/or modify practical case
studies. Most of the chapters come with a reproducibility package composed of
source code and datasets for the reader to experience the techniques described in the
chapters. A snapshot of the reproducibility packages has been uploaded to Zenodo as
complementary material for this volume. But the chapters also provide links to a live
version of the packages in GitHub, where the interested reader could find new updates
of the software tools presented in this book. Finally, all chapters were reviewed by
experts from industry and academia and were double-checked by the editors. The
result is a homogeneous book that, despite dealing with complex problems in each
topic, allows the reader to go deeper into the areas of interest from the ground up.
The two final chapters of the volume cover the necessary background on artificial
intelligence techniques for understanding the rest of the text.

Cérdoba, Spain José Rail Romero
Cadiz, Spain Inmaculada Medina-Bulo
Mailaga, Spain Francisco Chicano

October 2022

Acknowledgment

The editors would like to thank the qualified experts in AI4SE who have contributed
to this volume. Their view opens a unique window to the readers through which they
can observe future trends in the application of Al to the different problems that arise
during the software development process.

Special mention should be made to Dr. Mark Harman, Professor at University
College London and Research Scientist in a renowned IT company. Dr. Harman is
considered one of the fathers of search-based software engineering, and we thank
him for his willingness to participate in this project by writing the foreword to this
volume.

We would also like to thank the reviewers for their selfless work, who have
volunteered their time to provide an even better version of each of the chapters:

Dr. Shaukat Ali
Chief Research Scientist, Simula Research Laboratory, Norway

Dr. Jaume Bacardit
Reader, Newcastle University, United Kingdom

Dr. Juan J. Durillo
Scientific Staff, Leibniz Supercomputing Centre of the Bavarian Academy of
Sciences and Humanities, Germany

Mr. Aitor Facio Valero
Project Manager, Navantia, Spain

Dr. Arnaud Liefooghe
Associate Professor, University of Lille, France

Mrs. Marfa Mora
CIO at Municipal Information Technology Center, Mdlaga, Spain

Dr. Gregorio Robles
Full Professor, Universidad Rey Juan Carlos, Spain

xi

xii Acknowledgment

Mr. Rubén Salado
Head of Backend, Genially, Spain

Dr. Christopher L. Simons
Lecturer, University of the West of England, United Kingdom.

The development of this volume has been financially supported by Grant PID2020-
115832GB-100 funded by MICIN/AEI/10.13039/501100011033; and the Spanish
Research Network SEBASENet' funded by the Spanish Ministry of Science and
Innovation (SMSI), and co-funded by the European Regional Development Fund
(ERDF), project RED2018-102472-T. This work has also been supported by SMSI
and ERDF through the project AWESOMe (PID2021-122215NB-C33), and by the
University of Malaga (project B4-2019-05).

! SEBASENet Research Network: https://www.uco.es/SEBASENet/

https://www.uco.es/SEBASENet/

Contents

1

Introduction 1
José Raul Romero, Inmaculada Medina-Bulo,
and Francisco Chicano

PartI Planning and Analysis

2

Artificial Intelligence in Software Project Management 19
Liyan Song and Leandro L. Minku

Requirements Engineering 67
Fitsum Kifetew, Anna Perini, and Angelo Susi

Leveraging Artificial Intelligence for Model-based Software
Analysisand Design 93
Antonio Garmendia, Dominik Bork, Martin Eisenberg,

Thiago Ferreira, Marouane Kessentini, and Manuel Wimmer

Part I Development and Deployment

5

Statistical Models and Machine Learning to Advance Code
Completion: Are We There Yet? 121
Tien N. Nguyen

Cloud Development and Deployment 155
José Antonio Parejo and Ana Belén Sanchez

Part III Testing and Maintenance

7

Automated Support for Unit Test Generation 179
Afonso Fontes, Gregory Gay, Francisco Gomes de Oliveira Neto,
and Robert Feldt

Artificial Intelligence Techniques in System Testing 221
Michael Felderer, Eduard Paul Enoiu, and Sahar Tahvili

Xiii

Xiv Contents

9 Intelligent Software Maintenance 241
Foutse Khomh, Mohammad Masudur Rahman, and Antoine Barbez
Part IV Al Techniques from Scratch

10 Metaheuristicsina Nutshell 279
Javier Ferrer and Pedro Delgado-Pérez

11 Foundations of Machine Learning for Software Engineering 309
Aurora Ramirez and Breno Miranda

Contributors

José Antonio Parejo Smart Computer Systems Research and Engineering Lab
(SCORE), Research Institute of Computer Engineering (I3US), Universidad de
Sevilla, Seville, Spain

Antoine Barbez Polytechnique Montreal, Montreal, Canada;
Dalhousie University, Halifax, Canada

Dominik Bork TU Wien, Business Informatics Group, Vienna, Austria
Francisco Chicano University of Malaga, Malaga, Spain

Francisco Gomes de Oliveira Neto Chalmers and the University of Gothenburg,
Gothenburg, Sweden

Pedro Delgado-Pérez Department of Computer Science and Engineering, Univer-
sity of Cadiz, Cadiz, Spain

Martin Eisenberg JKU Linz, CDL-MINT, Institute of Business Informatics -
Software Engineering, Linz, Austria

Eduard Paul Enoiu Milardalen University, Vésterds, Sweden

Michael Felderer University of Innsbruck, Innsbruck, Austria;
Blekinge Institute of Technology, Karlskrona, Sweden

Robert Feldt Chalmers and the University of Gothenburg, Gothenburg, Sweden

Thiago Ferreira University of Michigan-Flint, College of Innovation & Tech-
nology, Michigan, USA

Javier Ferrer ITIS Software, University of Malaga, Malaga, Spain
Afonso Fontes Chalmers and the University of Gothenburg, Gothenburg, Sweden

Antonio Garmendia JKU Linz, Institute of Business Informatics - Software
Engineering, Linz, Austria

Gregory Gay Chalmers and the University of Gothenburg, Gothenburg, Sweden

XV

Xvi Contributors
Marouane Kessentini Oakland University, School of Engineering and Computer
Science, Michigan, USA

Foutse Khomh Polytechnique Montreal, Montreal, Canada

Fitsum Kifetew Fondazione Bruno Kessler, Trento, Povo, Italy

Mohammad Masudur Rahman Dalhousie University, Halifax, Canada
Inmaculada Medina-Bulo University of Cadiz, Cadiz, Spain

Leandro L. Minku School of Computer Science, University of Birmingham,
Birmingham, UK

Breno Miranda Informatics Center, Federal University of Pernambuco, Recife,
Brazil

Tien N. Nguyen University of Texas at Dallas, Dallas, USA
Anna Perini Fondazione Bruno Kessler, Trento, Povo, Italy

Aurora Ramirez Dept. Computer Science and Numerical Analysis, University of
Cérdoba, Cérdoba, Spain

José Raiil Romero University of Cérdoba, Cérdoba, Spain

Ana Belén Sanchez Smart Computer Systems Research and Engineering Lab
(SCORE), Research Institute of Computer Engineering (I3US), Universidad de
Sevilla, Seville, Spain

Liyan Song Department of Computer Science and Engineering, Southern Univer-
sity of Science and Technology, Shenzhen, China

Angelo Susi Fondazione Bruno Kessler, Trento, Povo, Italy

Sahar Tahvili Milardalen University, Vésteras, Sweden;
Ericsson AB, Stockholm, Sweden

Manuel Wimmer JKU Linz, CDL-MINT, Institute of Business Informatics -
Software Engineering, Linz, Austria

	Foreword
	Preface
	Acknowledgment
	Contents
	Contributors

