Skip to main content

Real-Time Internet of Things for Smart Environments

  • Reference work entry
  • First Online:
Book cover Handbook of Real-Time Computing

Abstract

Internet of Things enables continuous monitoring and control of everyday objects and environments through a combination of software, hardware, and wireless communication technologies. Embedded devices, wireless radios, sensors, and actuators are at the core of IoT applications. Time-sensitive IoT applications have to combine these elements and provide deterministic responses to events occurring in the application environment. Since the applications rely on a collection of embedded IoT devices, software protocols, and an operating system, application developers and architects are required to understand the characteristics and the protocols at all layers of the network stack to develop time-critical IoT applications. This chapter begins with an introduction to real-time IoT. Characteristics and the layered architecture of IoT applications are presented to explain the responsibilities of different layers. The chapter concludes with protocol and operating system recommendations for real-time IoT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • G. Ananthanarayanan, P. Bahl, P. Bodík, K. Chintalapudi, M. Philipose, L. Ravindranath, S. Sinha, Real-time video analytics: the killer app for edge computing. Computer 50(10), 58–67 (2017)

    Article  Google Scholar 

  • E. Aras, G.S. Ramachandran, P. Lawrence, D. Hughes, Exploring the security vulnerabilities of LoRa, in 2017 3rd IEEE International Conference on Cybernetics (CYBCONF), June 2017, pp. 1–6

    Google Scholar 

  • K. Arisha, M. Youssef, M. Younis, Energy-aware TDMA-based MAC for sensor networks, in System-Level Power Optimization for Wireless Multimedia Communication: Power Aware Computing, ed. by R. Karri, D. Goodman, (Springer US, Boston, 2002), pp. 21–40

    Chapter  Google Scholar 

  • J. Arnbak, W. van Blitterswijk, Capacity of slotted ALOHA in Rayleigh-fading channels. IEEEJ. Sel. Areas Commun. 5(2), 261–269 (1987)

    Article  Google Scholar 

  • E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, T.C. Schmidt, RIOT OS: towards an OS for the internet of things, in 2013 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Apr 2013, pp. 79–80

    Google Scholar 

  • J. Bardyn, T. Melly, O. Seller, N. Sornin, IoT: the era of LPWAN is starting now, in ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference, Sept 2016, pp. 25–30

    Google Scholar 

  • C. Bormann, M. Ersue, A. Keranen, Terminology for constrained-node networks. Technical report (2014)

    Google Scholar 

  • K. Brun-Laguna, A. L. Diedrichs, D. Dujovne, R. Léone, X. Vilajosana, T. Wat-teyne, (not so) intuitive results from a smart agriculture low-power wireless mesh deployment, in Proceedings of the Eleventh ACM Workshop on Challenged Networks – CHANTS ’16, (ACM Press, New York, 2016), pp. 25–30

    Google Scholar 

  • K. Brun-Laguna, A.L. Diedrichs, D. Dujovne, C. Taffernaberry, R. Léone, X. Vi-lajosana, T. Watteyne, Using SmartMesh IP in smart agriculture and smart building applications. Comput. Commun. 121, 83–90 (2018)

    Article  Google Scholar 

  • M. Ceriotti, M. Corrà, L. D’Orazio, R. Doriguzzi, D. Facchin, S.T. Gună, G.P. Jesi, R.L. Cigno, L. Mottola, A.L. Murphy, M. Pescalli, G.P. Picco, D. Pregnolato, C. Torghele, Is there light at the ends of the tunnel? wireless sensor networks for adaptive lighting in road tunnels, in Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks, Apr 2011, pp. 187–198

    Google Scholar 

  • A. Colvin, CSMA with collision avoidance. Comput. Commun. 6(5), 227–235 (1983)

    Article  Google Scholar 

  • J. Daemen, V. Rijmen, The Design of Rijndael: AES – The Advanced Encryption Standard (Springer Science & Business Media, New york, 2013)

    Google Scholar 

  • M. Doudou, D. Djenouri, N. Badache, A. Bouabdallah, Synchronous contention-based MAC protocols for delay-sensitive wireless sensor networks: a review and taxonomy. J. Netw. Comput. Appl. 38, 172–184 (2014)

    Article  Google Scholar 

  • D. Dujovne, T. Watteyne, X. Vilajosana, P. Thubert, 6TiSCH: deterministic IP-enabled industrial internet (of things). IEEE Commun. Mag. 52(12), 36–41 (2014)

    Article  Google Scholar 

  • A. Dunkels, B. Gronvall, T. Voigt, Contiki – a lightweight and flexible operating system for tiny networked sensors, in 29th Annual IEEE International Conference on Local Computer Networks, Nov 2004, pp. 455–462

    Google Scholar 

  • P. Dutta, D.E. Culler, S. Shenker, Procrastination might lead to a longer and more useful life, in HotNets, (2007)

    Google Scholar 

  • A. Eswaran, A. Rowe, R. Rajkumar, Nano-RK: an energy-aware resource-centric RTOS for sensor networks, in 26th IEEE International Real-Time Systems Symposium (RTSS’05), Dec 2005, pp. 10, 256–265

    Google Scholar 

  • P.T. Eugster, P.A. Felber, R. Guerraoui, A.-M. Kermarrec, The many faces of publish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

    Article  Google Scholar 

  • O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, P. Levis, Collection tree protocol, in Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, SenSys ’09, (ACM, New York, 2009), pp. 1–14

    Google Scholar 

  • I. Howitt, J.A. Gutierrez, IEEE 802.15.4 low rate – wireless personal area network coexistence issues, in 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003, vol. 3, Mar 2003, pp. 1481–1486

    Google Scholar 

  • C. Hsin, M. Liu, Randomly duty-cycled wireless sensor networks: dynamics of coverage. IEEE Trans. Wirel. Commun. 5(11), 3182–3192 (2006)

    Article  Google Scholar 

  • C. Karlof, N. Sastry, D. Wagner, TinySec: a link layer security architecture for wireless sensor networks, in Proceedings of the 2Nd International Conference on Embedded Networked Sensor Systems, SenSys ’04, (ACM, New York, 2004), pp. 162–175

    Google Scholar 

  • H. Kopetz, Event-triggered versus time-triggered real-time systems, in Operating Systems of the 90s and Beyond, volume 563 of Lecture Notes in Computer Science, ed. by A. Karshmer, J. Nehmer, (Springer, Berlin/Heidelberg, 1991), pp. 86–101

    Chapter  Google Scholar 

  • J.J. Labrosse, MicroC/OS-II: The Real Time Kernel (CRC Press, Lawrence, Kansas, 2002)

    Google Scholar 

  • S. Lee, H. Kim, D. Hong, H. Ju, Correlation analysis of MQTT loss and delay according to QoS level, in The International Conference on Information Networking 2013 (ICOIN), Jan 2013, pp. 714–717

    Google Scholar 

  • P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, D. Culler, TinyOS: an operating system for sensor networks, in Ambient Intelligence, ed. by W. Weber, J. M. Rabaey, E. Aarts, (Springer, Berlin/Heidelberg/Berlin/Heidelberg, 2005), pp. 115–148

    Chapter  Google Scholar 

  • A. Liu, P. Ning, TinyECC: a configurable library for elliptic curve cryptography in wireless sensor networks, in Proceedings of the 7th International Conference on Information Processing in Sensor Networks, IPSN ’08, (IEEE Computer Society, Washington, DC, 2008), pp. 245–256

    Google Scholar 

  • G. Lu, B. Krishnamachari, C.S. Raghavendra, An adaptive energy-efficient and low-latency MAC for data gathering in wireless sensor networks, in 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings, Apr 2004, pp. 224

    Google Scholar 

  • R.G. Machado, A.M. Wyglinski, Software-defined radio: bridging the analog–digital divide. Proc. IEEE 103(3), 409–423 (2015)

    Article  Google Scholar 

  • N. Mangalvedhe, R. Ratasuk, A. Ghosh, NB-IoT deployment study for low power wide area cellular IoT, in 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Sept 2016, pp. 1–6

    Google Scholar 

  • N. Matthys, F. Yang, W. Daniels, S. Michiels, W. Joosen, D. Hughes, T. Watteyne, μPnP-Mesh: the plug-and-play mesh network for the internet of things, in 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Dec 2015, pp. 311–315

    Google Scholar 

  • D. Messaoud, D. Djamel, B. Nadjib, Survey on latency issues of asynchronous MAC protocols in delay-sensitive wireless sensor networks. IEEE Trans. Commun. Surv. Tutorials 99, 1–23 (2012)

    Google Scholar 

  • E. Mosquitto, An Open Source MQTT Broker (2018) Eclipse Foundation, Canada

    Google Scholar 

  • M. Palattella, L. Grieco, Using IEEE 802.15.4e Time-Slotted channel hopping (TSCH) in the internet of things (IoT): problem statement. Technical report (2015)

    Google Scholar 

  • C. Perkins, E. Belding-Royer, S. Das, Ad hoc on-demand distance vector (AODV) routing. Technical report (2003)

    Google Scholar 

  • J. Postel, User datagram protocol. Technical report (1980)

    Google Scholar 

  • G.S. Ramachandran, N. Matthys, W. Daniels, W. Joosen, D. Hughes, Building dynamic and dependable Component-Based Internet-of-Things applications with dawn, in 2016 19th International ACM SIGSOFT Symposium on Component-Based Software Engineering (CBSE), Apr 2016, pp. 97–106

    Google Scholar 

  • G.S. Ramachandran, F. Yang, P. Lawrence, others, μPnP-WAN: experiences with LoRa and its deployment in DR Congo. Communication. (2017)

    Google Scholar 

  • R. Ratasuk, B. Vejlgaard, N. Mangalvedhe, A. Ghosh, NB-IoT system for M2M communication, in IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Apr 2016, pp. 428–432

    Google Scholar 

  • R.R. Rout, S.K. Ghosh, Enhancement of lifetime using duty cycle and network coding in wireless sensor networks. IEEE Trans. Wirel. Commun. 12(2), 656–667 (2013)

    Article  Google Scholar 

  • Z. Shelby, K. Hartke, C. Bormann, The Constrained Application Protocol (CoAP). Technical report (2014)

    Google Scholar 

  • S.A. Sigfox, Sigfox Technology Overview (2018) SigFox Foundation, France

    Google Scholar 

  • F. Sivrikaya, B. Yener, Time synchronization in sensor networks: a survey. IEEE Netw. 18(4), 45–50 (2004)

    Article  Google Scholar 

  • A. Springer, W. Gugler, M. Huemer, L. Reindl, C.C.W. Ruppel, R. Weigel, Spread spectrum communications using chirp signals, in IEEE/AFCEA EURO-COMM 2000. Information Systems for Enhanced Public Safety and Security (Cat. No.00EX405), May 2000, pp. 166–170

    Google Scholar 

  • O. Standard, MQTT version 3.1. 1. URL http://docs.oasis-open.org/mqtt/mqtt/v3, 1 (2014)

  • R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, D. Estrin, Habitat monitoring with sensor networks. Commun. ACM 47(6), 34 (2004)

    Article  Google Scholar 

  • D. Thangavel, X. Ma, A. Valera, H. Tan, C. K. Tan, Performance evaluation of MQTT and CoAP via a common middleware, in 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Apr 2014, pp. 1–6

    Google Scholar 

  • A. Tzamaloukas, J.J. Garcia-Luna-Aceves, Channel-hopping multiple access, in 2000 IEEE International Conference on Communications. ICC 2000. Global Convergence Through Communications. Conference Record, vol. 1, June 2000, pp. 415–419

    Google Scholar 

  • B. Vejlgaard, M. Lauridsen, H. Nguyen, I.Z. Kovács, P. Mogensen, M. Sorensen, Coverage and capacity analysis of sigfox, lora, gprs, and nb-iot, in Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 2017, pp. 4–7

    Google Scholar 

  • X. Vilajosana, P. Tuset, T. Watteyne, K. Pister, OpenMote: Open-Source prototyping platform for the industrial IoT, in Ad Hoc Networks, (Springer International Publishing, 2015), San Remo, Italy, pp. 211–222

    Google Scholar 

  • T. Watteyne, A. Mehta, K. Pister, Reliability through frequency diversity, in Proceedings of the 6th ACM Symposium on Performance Evaluation Of Wireless Ad Hoc, Sensor, And Ubiquitous Networks – PE-WASUN ’09, 2009

    Google Scholar 

  • T. Watteyne, J. Weiss, L. Doherty, J. Simon, Industrial IEEE802.15.4e networks: performance and trade-offs, in 2015 IEEE International Conference on Communications (ICC), June 2015, pp. 604–609

    Google Scholar 

  • T. Watteyne, A.L. Diedrichs, K. Brun-Laguna, J.E. Chaar, D. Dujovne, J.C. Taffernaberry, G. Mercado, PEACH: predicting frost events in peach orchards using IoT technology. EAI Endorsed Trans. Internet Things 2(5) (2016)

    Google Scholar 

  • G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees, M. Welsh, Deploying a wireless sensor network on an active volcano. IEEE Internet Comput. 10(2), 18–25 (2006)

    Article  Google Scholar 

  • T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, J.P. Vasseur, R. Alexander, RPL: IPv6 routing protocol for low-power and lossy networks. Technical report (2012)

    Google Scholar 

  • A. J. Wixted, P. Kinnaird, H. Larijani, A. Tait, A. Ahmadinia, N. Strachan. Evaluation of LoRa and LoRaWAN for wireless sensor networks, in 2016 IEEE SENSORS, (2016), pp. 1–3

    Google Scholar 

  • G.R. Wright, W.R. Stevens, TCP/IP Illustrated: The Implementation, vol 2 (Addison-Thesley, 1995) Boston, MA

    Google Scholar 

  • Y. Yao, J. Gehrke, The cougar approach to in-network query processing in sensor networks. SIGMOD Rec. 31(3), 9–18 (2002)

    Article  Google Scholar 

  • S. Zacharias, T. Newe, S. O’Keeffe, E. Lewis, 2.4 GHz IEEE 802.15.4 channel interference classification algorithm running live on a sensor node, in SENSORS, 2012 IEEE, Oct 2012, pp. 1–4

    Google Scholar 

  • H. Zimmermann, OSI reference model – the ISO model of architecture for open systems interconnection. IEEE Trans. Commun. 28(4), 425–432 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gowri Sankar Ramachandran .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ramachandran, G.S., Krishnamachari, B. (2022). Real-Time Internet of Things for Smart Environments. In: Tian, YC., Levy, D.C. (eds) Handbook of Real-Time Computing. Springer, Singapore. https://doi.org/10.1007/978-981-287-251-7_47

Download citation

Publish with us

Policies and ethics