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About This Book

Every day, we share our personal information through digital systems which are
constantly exposed to threats. For this reason, security-oriented disciplines of signal
processing have received increasing attention in the last decades: multimedia
forensics, digital watermarking, biometrics, network monitoring, steganography
and steganalysis are just a few examples. Even though each of these fields has its
own peculiarities, they all have to deal with a common problem: the presence of one
or more adversaries aiming at making the system fail. Adversarial Signal
Processing lays the basis of a general theory that takes into account the impact that
the presence of an adversary has on the design of effective signal processing tools.

By focusing on the application side of Adversarial Signal Processing, namely
adversarial information fusion in distributed sensor networks, and adopting a
game-theoretic approach, this book presents the recent advances in the field and
how several issues have been addressed. First, a heuristic decision fusion setup is
presented together with the corresponding soft isolation defense scheme that pro-
tects the network from adversaries, specifically, Byzantines. Second, the develop-
ment of an optimum decision fusion strategy in the presence of Byzantines is
outlined. Finally, a technique to reduce the complexity of the optimum fusion by
relying on a novel nearly optimum message passing algorithm based on factor
graphs is presented.
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