Skip to main content

Copy–Move Image Forgery Detection Using Gray-Tones with Texture Description

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1024))

Abstract

Copy–move forgery is a well-known image forgery technique. In this image manipulation method, a certain area of the image is replicated and affixed over the same image on different locations. Most of the times replicated segments suffer from multiple post-processing and geometrical attacks to hide sign of tampering. We have used block-based method for forgery detection. In block-based proficiencies, image is parted into partially overlapping blocks. Features are extracted corresponding to blocks. In the proposed scheme, we have computed Gray-Level Co-occurrence Matrix (GLCM) for blocks. Singular Value Decomposition (SVD) is applied over GLCM to find singular values. We have calculated Local Binary Pattern (LBP) for all blocks. The singular values and LBP features combinedly construct feature vector corresponding to blocks. These feature vectors are sorted lexicographically. Further, similar blocks discovered to identify replicated section of image. To ensure endurance of the proposed methods, Detection Accuracy (DA), False Positive Rate (FPR), and F-Measure are calculated and compared with existing methods. Experimental results establish the validity of proposed scheme for precise detection, even when meddled region of image sustain distortion due to brightness change, blurring, color reduction, and contrast adjustment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zandi, M., Mahmoudi-Aznaveh, A., Talebpour, A.: Iterative copy-move forgery detection based on a new interest point detector. IEEE Trans. Inf. Forensics Secur. 11(11), 2499–2512 (2016). https://doi.org/10.1109/TIFS.2016.2585118

    Article  Google Scholar 

  2. Chen, C., Ni, J., Shen, Z., Shi, Y.Q.: Blind forensics of successive geometric transformations in digital images using spectral method: theory and applications. IEEE Trans. Image Process. 26(6), 2811–2824 (2017). https://doi.org/10.1109/TIP.2017.2682963

    Article  MathSciNet  MATH  Google Scholar 

  3. Fridrich, J., Soukal, D., Lukas, J.: Detection of copy-move forgery in digital images. In: Digital Forensic Research Workshop, pp. 55–61. IEEE Computer Society (2003)

    Google Scholar 

  4. Alkawaz, M.H., Sulong, G., Saba, T., Rehman, A.: Detection of copy-move image forgery based on discrete cosine transform. Neural Comput. Appl. 1–10 (2016). https://doi.org/10.1007/s00521-016-2663-3

    Article  Google Scholar 

  5. Zandi, M., Mahmoudi-Aznaveh, A., Mansouri, A.: Adaptive matching for copy-move forgery detection. IEEE International Workshop on Information Forensics and Security (WIFS), pp. 119–124 (2014). https://doi.org/10.13140/RG.2.1.2189.5200

  6. Lee, J.C., Chang, C.P., Chen, W.K.: Detection of copy-move image forgery using histogram of orientated gradients. Inf. Sci. 321(C), 250–262 (2015). https://doi.org/10.1016/j.ins.2015.03.009

    Article  Google Scholar 

  7. Silva, E., Carvalho, T., Ferreira, A., Rocha, A.: Going deeper into copy-move forgery detection: exploring image telltales via multi-scale analysis and voting processes. J. Vis. Commun. Image Represent. 29, 16–32 (2015). https://doi.org/10.1016/j.jvcir.2015.01.016

    Article  Google Scholar 

  8. Shen, X., Shi, Z., Chen, H.: Splicing image forgery detection using textural features based on grey level co-occurrence matrices. IET Image Process. 11(1), 44–53 (2017). https://doi.org/10.1049/iet-ipr.2016.0238

    Article  Google Scholar 

  9. Tai, Y., Yang, J., Luo, L., Zhang, F., Qian, J.: Learning discriminative singular value decomposition representation for face recognition. Pattern Recognit. 50, 1–16 (2016). https://doi.org/10.1016/j.patcog.2015.08.010

    Article  Google Scholar 

  10. Zhang, T., Wang, R.: Copy-move forgery detection based on SVD in digital images. In: International Congress on Image and Signal Processing, pp. 1–5 (2009). https://doi.org/10.1109/CISP.2009.5301325

  11. Li, L., Li, S., Zhu, H., Chu, S.C., Roddick, J.F., Pan, J.S.: An efficient scheme for detecting copy-move forged images by local binary patterns. J. Inf. Hiding Multimed. Signal Process. 4(1), 46–56 (2013)

    Google Scholar 

  12. Li, Z., Liu, G.Z., Yang, Y., You, Z.Y.: Scale and rotation-invariant local binary pattern using scale-adaptive texton subuniform-based circular shift and sub uniform-based circular shift. IEEE Trans. Image Process. 21(4), 2130–2140 (2012). https://doi.org/10.1109/TIP.2011.2173697

    Article  MathSciNet  MATH  Google Scholar 

  13. Tralic, D., Zupancic, I., Grgic, S., Grgic, M.: CoMoFoD—new database for copy-move forgery detection. In: International Symposium Electronics in Marine, pp. 49–54 (2013)

    Google Scholar 

  14. Khan, S., Kulkarni, A.: An efficient method for detection of copy-move forgery using discrete wavelet transform. Int. J. Comput. Sci. Eng. 2(5), 1801–1806 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuja Dixit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dixit, A., Bag, S. (2020). Copy–Move Image Forgery Detection Using Gray-Tones with Texture Description. In: Chaudhuri, B., Nakagawa, M., Khanna, P., Kumar, S. (eds) Proceedings of 3rd International Conference on Computer Vision and Image Processing. Advances in Intelligent Systems and Computing, vol 1024. Springer, Singapore. https://doi.org/10.1007/978-981-32-9291-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9291-8_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9290-1

  • Online ISBN: 978-981-32-9291-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics