Skip to main content

Compact Modeling of Drain-Extended MOS Transistor Using BSIM-BULK Model

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1066))

Abstract

The charge based compact model for Drain-Extended MOS (DEMOS) transistor is presented in this work. Proposed model accurately predicts the special effects of quasi-saturation, present in high voltage MOSFETs. Modeling methodology used in this paper includes the drift resistance model based on intrinsic drain current, and low voltage BSIM-BULK model. Developed model along with the BSIM-BULK compact model can be used for the modeling of low voltage bulk MOSFETs to DEMOS transistors. Proposed model results are validated with Technology Computer-Aided Design (TCAD) DEMOS data. The model is accurately capturing the impact of drift region on DC I-V characteristics and their derivatives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mitros, J.C., et al.: High-voltage drain extended MOS transistors for 0.18-\(\upmu \)m logic CMOS process. IEEE Trans. Electron Devices 48(8), 1751–1755 (2001). https://doi.org/10.1109/16.936703

    Article  Google Scholar 

  2. Chauhan, Y.S.: Compact modeling of high voltage MOSFETs, p. 136 (2007). https://doi.org/10.5075/epfl-thesis-3915. http://infoscience.epfl.ch/record/109934

  3. Chauhan, Y.S., et al.: Scalable general high voltage MOSFET model including quasi-saturation and self-heating effects. Solid-State Electron. 50(11), 1801–1813 (2006). https://doi.org/10.1016/j.sse.2006.09.002. http://www.sciencedirect.com/science/article/pii/S0038110106002966

    Article  Google Scholar 

  4. Anghel, C., et al.: Physical modelling strategy for (quasi-) saturation effects in lateral DMOS transistor based on the concept of intrinsic drain voltage. In: 2001 International Semiconductor Conference. CAS 2001 Proceedings (Cat. No. 01TH8547), vol. 2, pp. 417–420, October 2001. https://doi.org/10.1109/SMICND.2001.967497

  5. Chauhan, Y.S., et al.: A compact DC and AC model for circuit simulation of high voltage VDMOS transistor. In: 7th International Symposium on Quality Electronic Design (ISQED 2006), pp. 109–114, March 2006. https://doi.org/10.1109/ISQED.2006.7

  6. Pawel, S., Kusano, H., Nakamura, Y., Teich, W., Terashima, T., Netzel, M.: Simulator-independent capacitance macro model for power DMOS transistors. In: Proceedings of 2003 IEEE 15th International Symposium on Power Semiconductor Devices and ICs, ISPSD 2003, pp. 287–290, April 2003. https://doi.org/10.1109/ISPSD.2003.1225284

  7. Anghel, C., Chauhan, Y.S., Hefyene, N., Ionescu, A.M.: A physical analysis of HV MOSFET capacitance behaviour. In: Proceedings of the IEEE International Symposium on Industrial Electronics, ISIE 2005, vol. 2, pp. 473–477, June 2005. https://doi.org/10.1109/ISIE.2005.1528963

  8. Anghel, C., et al.: New method for threshold voltage extraction of high-voltage mosfets based on gate-to-drain capacitance measurement. IEEE Electron Device Lett. 27(7), 602–604 (2006). https://doi.org/10.1109/LED.2006.877275

    Article  Google Scholar 

  9. Chauhan, Y.S., et al.: Analysis and modeling of lateral non-uniform doping in high voltage MOSFETs. In: 2006 International Electron Devices Meeting, pp. 1–4, December 2006. https://doi.org/10.1109/IEDM.2006.347000

  10. Chauhan, Y.S., Krummenacher, F., Gillon, R., Bakeroot, B., Declercq, M., Ionescu, A.M.: A new charge based compact model for Lateral Asymmetric MOSFET and its application to High Voltage MOSFET modeling. In: 20th International Conference on VLSI Design Held Jointly with 6th International Conference on Embedded Systems (VLSID 2007), pp. 177–182, January 2007. https://doi.org/10.1109/VLSID.2007.15

  11. Roy, A.S., Chauhan, Y.S., Sallese, J.M., Enz, C.C., Ionescu, A.M., Declercq, M.: Partitioning scheme in lateral asymmetric most. In: 2006 European Solid-State Device Research Conference, pp. 307–310, September 2006. https://doi.org/10.1109/ESSDER.2006.307699

  12. Roy, A.S., Chauhan, Y.S., Enz, C.C., Sallese, J.M.: Noise modeling in lateral asymmetric MOSFET. In: 2006 International Electron Devices Meeting, pp. 1–4, December 2006. https://doi.org/10.1109/IEDM.2006.346994

  13. Khandelwal, S., Sharma, S., Chauhan, Y.S., Gneiting, T., Fjeldly, T.A.: Modeling and simulation methodology for SOA-aware circuit design in DC and pulsed-mode operation of HV MOSFETs. IEEE Trans. Electron Devices 60(2), 714–718 (2013). https://doi.org/10.1109/TED.2012.2218112

    Article  Google Scholar 

  14. D’Halleweyn, N.V., Tiemeijer, L.F., Benson, J., Redman-White, W.: Charge model for SOI LDMOST with lateral doping gradient. In: Proceedings of the 13th International Symposium on Power Semiconductor Devices and ICs, ISPSD 2001, pp. 291–294 (2001). https://doi.org/10.1109/ISPSD.2001.934612

  15. Level = 88 HV MOS Model. https://www.silvaco.com.cn/tech_lib_eda/kbase/ams/pdf/hvmos_jpws.pdf

  16. Enz, C.C., Krummenacher, F., Vittoz, E.A.: An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. Analog Integr. Circuits Signal Process. 8(1), 83–114 (1995). https://doi.org/10.1007/BF01239381

    Article  Google Scholar 

  17. Chauhan, Y.S., Gillon, R., Bakeroot, B., Krummenacher, F., Declercq, M., Ionescu, A.M.: An EKV-based high voltage MOSFET model with improved mobility and drift model. Solid-State Electron. 51(11), 1581–1588 (2007). https://doi.org/10.1016/j.sse.2007.09.024. http://www.sciencedirect.com/science/article/pii/S0038110107003437. Special Issue: Papers Selected from the 36th European Solid-State Device Research Conference - ESSDERC 2006

    Article  Google Scholar 

  18. Chauhan, Y.S., et al.: A highly scalable high voltage MOSFET model. In: 2006 European Solid-State Device Research Conference, pp. 270–273, September 2006. https://doi.org/10.1109/ESSDER.2006.307690

  19. Subramanian, V.: High voltage MOSFET technology, models, and applications. In: 12th MOS-AK Workshop (2012)

    Google Scholar 

  20. Agnihotri, S., Ghosh, S., Dasgupta, A., Chauhan, Y.S., Khandelwal, S.: A surface potential based model for GaN HEMTs. In: 2013 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), pp. 175–179, December 2013. https://doi.org/10.1109/PrimeAsia.2013.6731200

  21. Ghosh, S., et al.: Modeling of temperature effects in a surface-potential based ASM-HEMT model. In: 2014 IEEE 2nd International Conference on Emerging Electronics (ICEE), pp. 1–4, December 2014. https://doi.org/10.1109/ICEmElec.2014.7151197

  22. Dasgupta, A., Khandelwal, S., Chauhan, Y.S.: Compact modeling of flicker noise in HEMTs. IEEE J. Electron Devices Soc. 2(6), 174–178 (2014). https://doi.org/10.1109/JEDS.2014.2347991

    Article  Google Scholar 

  23. Dasgupta, A., Ghosh, S., Chauhan, Y.S., Khandelwal, S.: ASM-HEMT: compact model for GaN HEMTs. In: 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp. 495–498, June 2015. https://doi.org/10.1109/EDSSC.2015.7285159

  24. Khandelwal, S., Ghosh, S., Chauhan, Y.S., Iniguez, B., Fjeldly, T.A.: Surface-potential-based RF large signal model for GaN HEMTs. In: 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), pp. 1–4, October 2015. https://doi.org/10.1109/CSICS.2015.7314527

  25. Ahsan, S.A., Ghosh, S., Khandelwal, S., Chauhan, Y.S.: Modeling of kink-effect in RF behaviour of GaN HEMTs using ASM-HEMT model. In: 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp. 426–429, August 2016. https://doi.org/10.1109/EDSSC.2016.7785299

  26. Aarts, A.C.T., Kloosterman, W.J.: Compact modeling of high-voltage LDMOS devices including quasi-saturation. IEEE Trans. Electron Devices 53(4), 897–902 (2006). https://doi.org/10.1109/TED.2006.870423

    Article  Google Scholar 

  27. Chauhan, Y.S., et al.: BSIM6: analog and RF compact model for bulk MOSFET. IEEE Trans. Electron Devices 61(2), 234–244 (2014). https://doi.org/10.1109/TED.2013.2283084

    Article  MathSciNet  Google Scholar 

  28. Chauhan, Y.S., et al.: BSIM6: symmetric bulk MOSFET model. In: Workshop on Compact Modeling (WCM), June 2012

    Google Scholar 

  29. Gupta, C., et al.: BSIM-BULK 106.2.0 Technical Manual. http://bsim.berkeley.edu/models/bsimbulk/

  30. Chauhan, Y.S., et al.: BSIM compact MOSFET models for spice simulation. In: Proceedings of the 20th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2013, pp. 23–28, June 2013

    Google Scholar 

  31. Dutta, A., Sirohi, S., Ethirajan, T., Agarwal, H., Chauhan, Y.S., Williams, R.Q.: BSIM6 - benchmarking the next-generation MOSFET model for RF applications. In: 2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems, pp. 421–426, January 2014. https://doi.org/10.1109/VLSID.2014.79

  32. Agarwal, H., et al.: Recent enhancements in BSIM6 bulk MOSFET model. In: 2013 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 53–56, September 2013. https://doi.org/10.1109/SISPAD.2013.6650572

  33. Chalkiadaki, M.A., et al.: Evaluation of the BSIM6 compact MOSFET model’s scalability in 40 nm CMOS technology. In: 2012 Proceedings of the European Solid-State Device Research Conference (ESSDERC), pp. 50–53, September 2012. https://doi.org/10.1109/ESSDERC.2012.6343331

  34. Agarwal, H., Khandelwal, S., Dey, S., Hu, C., Chauhan, Y.S.: Analytical modeling of flicker noise in halo implanted MOSFETs. IEEE J. Electron Devices Soc. 3(4), 355–360 (2015). https://doi.org/10.1109/JEDS.2015.2424686

    Article  Google Scholar 

  35. Mohamed, N., Agarwal, H., Gupta, C., Chauhan, Y.S.: Compact modeling of nonquasi-static effect in bulk MOSFETs for RF circuit design in sub-THz regime. In: 2016 3rd International Conference on Emerging Electronics (ICEE), pp. 1–4, December 2016. https://doi.org/10.1109/ICEmElec.2016.8074573

  36. Dabhi, C.K., et al.: BSIM4 User Manual. http://bsim.berkeley.edu/models/bsim4/

  37. D’Halleweyn, N.V., Benson, J., Redman-White, W., Mistry, K., Swanenberg, M.: MOOSE: a physically based compact DC model of SOI LDMOSFETs for analogue circuit simulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(10), 1399–1410 (2004). https://doi.org/10.1109/TCAD.2004.835125

    Article  Google Scholar 

  38. Chauhan, Y.S., Gillon, R., Declercq, M., Ionescu, A.M.: Impact of lateral nonuniform doping and hot carrier injection on capacitance behavior of high voltage MOSFETs. IETE Tech. Rev. 25(5), 244–250 (2008)

    Article  Google Scholar 

  39. Chauhan, Y.S., Krummenacher, F., Gillon, R., Bakeroot, B., Declercq, M.J., Ionescu, A.M.: Compact modeling of lateral nonuniform doping in high-voltage MOSFETs. IEEE Trans. Electron Devices 54(6), 1527–1539 (2007)

    Article  Google Scholar 

  40. Chauhan, Y.S., Gillon, R., Declercq, M., Ionescu, A.M.: Impact of lateral non-uniform doping and hot carrier degradation on capacitance behavior of high voltage MOSFETs. In: ESSDERC 2007 – 37th European Solid State Device Research Conference, pp. 426–429, September 2007

    Google Scholar 

  41. Sahoo, J.R., et al.: High voltage LDMOSFET modeling using BSIM6 as intrinsic-MOS model. In: 2013 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), pp. 56–61, December 2013. https://doi.org/10.1109/PrimeAsia.2013.6731178

  42. Gupta, C., et al.: Modeling of high voltage LDMOSFET using industry standard BSIM6 MOS model. In: 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp. 124–127, August 2016. https://doi.org/10.1109/EDSSC.2016.7785225

  43. Khandelwal, S., Ghosh, S., Ahsan, S.A., Dasgupta, A., Chauhan, Y.S.: ASM-HEMT 101.0.0 Technical Manual. http://iitk.ac.in/asm/

  44. Khandelwal, S., et al.: Robust surface-potential-based compact model for GaN HEMT IC design. IEEE Trans. Electron Devices 60(10), 3216–3222 (2013). https://doi.org/10.1109/TED.2013.2265320

    Article  Google Scholar 

  45. Sharma, K., Dasgupta, A., Ghosh, S., Ahsan, S.A., Khandelwal, S., Chauhan, Y.S.: Effect of access region and field plate on capacitance behavior of GaN HEMT. In: 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp. 499–502, June 2015. https://doi.org/10.1109/EDSSC.2015.7285160

  46. Ahsan, S.A., Ghosh, S., Sharma, K., Dasgupta, A., Khandelwal, S., Chauhan, Y.S.: Capacitance modeling in dual field-plate power GaN HEMT for accurate switching behavior. IEEE Trans. Electron Devices 63(2), 565–572 (2016). https://doi.org/10.1109/TED.2015.2504726

    Article  Google Scholar 

  47. Ahsan, S.A., Ghosh, S., Khandelwal, S., Chauhan, Y.S.: Physics-based multi-bias RF large-signal GaN HEMT modeling and parameter extraction flow. IEEE J. Electron Devices Soc. 5(5), 310–319 (2017). https://doi.org/10.1109/JEDS.2017.2724839

    Article  Google Scholar 

  48. Ahsan, S.A., Pampori, A., Ghosh, S., Khandelwal, S., Chauhan, Y.S.: A new small-signal parameter extraction technique for large gate-periphery GaN HEMTs. IEEE Microw. Wirel. Compon. Lett. 27(10), 918–920 (2017). https://doi.org/10.1109/LMWC.2017.2746661

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivendra Singh Parihar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parihar, S.S., Gurjar, R. (2019). Compact Modeling of Drain-Extended MOS Transistor Using BSIM-BULK Model. In: Sengupta, A., Dasgupta, S., Singh, V., Sharma, R., Kumar Vishvakarma, S. (eds) VLSI Design and Test. VDAT 2019. Communications in Computer and Information Science, vol 1066. Springer, Singapore. https://doi.org/10.1007/978-981-32-9767-8_55

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9767-8_55

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9766-1

  • Online ISBN: 978-981-32-9767-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics