
MinerGate: A Novel Generic and Accurate
Defense Solution Against Web Based
Cryptocurrency Mining Attacks

Guorui Yu1, Guangliang Yang2, Tongxin Li1, Xinhui Han1(B), Shijie Guan1,
Jialong Zhang3, and Guofei Gu2

1 Peking University, Beijing 100871, China
{yuguorui,litongxin,hanxinhui,1600012835}@pku.edu.cn

2 Texas A&M University, Texas, TX 77843, USA
ygl@tamu.edu, guofei@cse.tamu.edu
3 ByteDance AI Lab, Beijing 100098, China

zjl.xjtu@gmail.com

Abstract. Web-based cryptocurrency mining attacks, also known as cryptojack-
ing, become increasingly popular. A large number of diverse platforms (e.g., Win-
dows, Linux, Android, and iOS) and devices (e.g., PC, smartphones, tablets, and
even critical infrastructures) are widely impacted. Although a variety of detection
approaches were recently proposed, it is challenging to apply these approaches to
attack prevention directly.

Instead, in this paper,we present a novel generic and accurate defense solution,
called “MinerGate”, against cryptojacking attacks. To achieve the goal,MinerGate
is designed as an extension of network gateways or proxies to protect all devices
behind it.When attacks are identified,MinerGate can enforce security rules on vic-
tim devices, such as stopping the execution of related JavaScript code and alerting
victims. Compared to prior approaches, MinerGate does not require anymodifica-
tion of browsers or apps to collect the runtime features. Instead,MinerGate focuses
on the semantics of mining payloads (usually written in WebAssembly/asm.js),
and semantic-based features.

In our evaluation, we first verify the correctness of MinerGate by testing
MinerGate in a real environment. Then, we check MinerGate’s performance and
confirm MinerGate introduces relatively low overhead. Last, we verify the accu-
racy of MinerGate. For this purpose, we collect the largest WebAssembly/asm.js
related code with ground truth to build our experiment dataset. By comparing
prior approaches and MinerGate on the dataset, we find MinerGate achieves bet-
ter accuracy and coverage (i.e., 99% accuracy and 98% recall). Our dataset will
be available online, which should be helpful for more solid understanding of
cryptojacking attacks.

Keywords: Cryptojacking · WebAssembly · asm.js

© The Author(s) 2020
W. Lu et al. (Eds.): CNCERT 2020, CCIS 1299, pp. 50–70, 2020.
https://doi.org/10.1007/978-981-33-4922-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-4922-3_5&domain=pdf
https://doi.org/10.1007/978-981-33-4922-3_5

MinerGate 51

1 Introduction

Recently, cryptocurrency mining attacks, also known as cryptojacking attacks, are
becoming increasingly popular. Different from regular attacks, which usually aim at
the access or destruction of private data or sensitive functionalities, this attack mainly
focuses on stealing the computing resources (e.g., CPU) of victim Internet-connected
devices for covertly mining cryptocurrencies and accumulating wealth.

Although themining attack does notmakemalicious and notorious actions, it can still
cause serious consequences. For example, the mining code usually occupies the most (or
even the whole) of physical resources (e.g., CPU, Memory, and network), which results
in all services and apps in the victim devices become inactive, unresponsive, or even
crashed. Furthermore, this attack also significantly reduces the life cycle of hardware,
such as the battery of laptops and smartphones.

With the significant development of web techniques (e.g., WebSocket [31], Web
Worker [30], WebAssembly [9], asm.js [6]), more and more mining attacks are moved
to the web platform, which means they can be simply launched by embedding JavaScript
snippets. The attack scenario is shown in Fig. 1. First, in the victim websites, attackers
include mining script code [15, 16], which is used to initialize the environment, and
download and execute mining payloads. Please note that in general the mining payloads
are written in WebAssembly/asm.js, which are intermediate languages and allow web
browsers to run low-level languages (e.g., C/C++) for near-native performance.

Internet

Mining
pool

PC

Mobile

Tablet

Critical
Infrastructure

Others

Victim
Websites

Fig. 1. Example attack scenarios

Up to now, a large number of diverse platforms (e.g., Windows, Linux, Android, and
iOS) and devices (e.g., PC, smartphones, tablets, and even critical infrastructures) have
been widely impacted. For example, recent studies [1, 5] showed popular applications
running in smartphones or PCmight silently launch the attacks by executing webmining
payloads in the background. Furthermore, critical infrastructures (e.g., industrial control
systems) may also be threatened by the mining attack. A recent report showed that a
water utility [20] was attacked which might cause its industrial control application to be
paused and even crashed.

52 G. Yu et al.

Even worse, the attack may be hardly stopped once the related web code is executed
in the background. A recent report [4] showed attackers could even continue mining
with the help of service worker after closing the infected web page.

Therefore, a defense solution that can provide protection on all various devices and
eliminate the threats of mining attacks is expected. Recently, a variety of detection
solutions [10, 12, 13, 17, 32] have been proposed. However, these approaches do not
meet the requirements. First, they are not scalable. Most of them [13, 17, 32] require the
modification of web browser engines to collect runtime features, such as the usage of
CPU, memory, and network activities. The above solutions not only bring considerable
additional overhead to the browser, but also make it difficult to deploy the defense.
Second, in case users access infected websites, the mining code should be immediately
stopped. However, prior approaches [10, 12] does not meet the requirements. Third,
the user experience should not be significantly influenced. However, prior tools may
introduce high overhead. For example, [32] introduced almost 100% overhead.

Furthermore, prior approaches may face high false positives and negatives. To iden-
tify mining code, they either use a blacklist to block the access of infected websites,
or leverage heuristic features to detect mining code. For the blacklist-based tools (e.g.,
Firefox [2]), it is difficult to keep up with the rapid iteration of mining websites, and thus
may cause high false negatives. For the heuristic features, these features mainly include
1) the usage of CPU, memory, and network, 2) CPU cache events, and 3) cryptographic
instructions. In our test, we find it is challenging for existing approaches to distinguish
between benign CPU-intensive code and mining code.

Instead, in this paper, we propose a novel, general, and accurate protection solution,
called MinerGate, that can automatically and effectively provide security enforcement
on end devices against mining attacks. To achieve the goal, MinerGate is deployed
as an extension of network gateways or proxies. As shown in Fig. 2, our approach is
three-fold. First, MinerGate monitors network traffic to catch cryptocurrency mining
payloads. For this purpose, MinerGate instruments all network traffic by injecting pre-
defined JavaScript code “stub.js”, which will be executed in local devices. The injected
stub code is responsible for extractingWebAssembly/asm.js code and enforcing security
rules. When stub.js uncovers web code written in WebAssembly/asm.js in a victim
device, it will send the content or the reference of related code to MinerGate for further
analysis.

JavaScript
Instrumentation

Payload extraction

Security
enforcement

Stub.js

Original web code

Instrumented web code

Feature extraction

Semantic signature
matching

Machine learning based
attack detection

Security policies

Security enforcementExtract mining
payload candidates

Generate rules
based on the

classification results

Fig. 2. MinerGate’s workflow

Second, different from prior approaches, which rely on the analysis on collected
runtime features, MinerGate mainly focuses on understanding the semantics (e.g., CG

MinerGate 53

and CFG) of WebAssembly/asm.js code. Through data-driven feature selection, Miner-
Gate determines and extracts semantic-related features and forwards these features to a
machine learning engine for determining the existence of mining code. Last, once min-
ing code is found, MinerGate notifies the victim device (i.e., stub.js) to apply security
rules, such as stopping the execution of web code and alerting the victim user and the
network administrator.

In our evaluation, we first verify the correctness of MinerGate by testing MinerGate
in a real environment. Then, we checkMinerGate’s performance and confirmMinerGate
introduces relatively low overhead. Last, we verify the accuracy of MinerGate. For this
purpose, we first address the challenge there is still not a reliable labeled dataset of cryp-
tojacking mining payloads. To create such a dataset with ground truth, we systematically
collect WebAssembly/asm.js code from the 10 million web pages, and NPM [11]. As a
consequence, our dataset includes not only mining code from 4659 pages, but also 243
projects related to benign WebAssembly/asm.js. We will open up this dataset for the
follow-up research. This dataset should be helpful for a better understanding of mining
attacks.

Based on the dataset, we compare MinerGate and prior tools. We find MinerGate
achieves better accuracy and coverage (i.e., 99% accuracy and 98% recall).

To sum up, we make the following contributions:

• We propose the novel, generic and accurate defense solution “MinerGate” against
mining attacks.

• MinerGate obtains high accuracy by extracting and applying semantic-based features
with help of call graph (CG) and control flow graph (CFG).

• We build the largest ground truth dataset.
• We compare MinerGate and existing related approaches, and show MinerGate is
scalable, effective and accurate.

2 Background

2.1 Cryptocurrency Mining and Cryptojacking Attacks

Cryptocurrencies are digital assets designed to work as a medium of exchange that
uses strong cryptography to secure financial transactions, control the creation of addi-
tional units, and verify the transfer of assets [34]. The cryptocurrency uses a distributed
database, blockchain, to store the transactions in units of blocks. Each block mainly
includes a unique ID, the ID of the preceding block, the timestamp, the nonce, the
difficulty, and transaction records. A valid block contains a solution to a cryptographic
puzzle involving the hash of the previous block, the hash of the transactions in the current
block, and a cryptocurrency address which is to be credited with a reward for solving the
cryptographic puzzle. The specific cryptographic puzzle is to find a block of data whose
hash value is smaller than a set value which is decided by the difficulty. Most data of the
block are known, and the miner should find the unknown part in a limited time. Once
the pronumeral, typically is the nonce, is found, the miner will submit it to get profit.
This process is called cryptocurrency mining [7].

54 G. Yu et al.

Cryptojacking, the unauthorized use of hardware of others to mine cryptocurrency,
has become the biggest cyber threat in many parts of the world. Cryptojacking was
a burgeoning industry in 2018, there have been 13 million cryptojacking attempts in
the case of a 40% increase in 2018 [19]. Using crypto-mining malware, criminals have
mined earning up to 56 million USD in 2018. There are many reasons why cryptojack-
ing is overgrowing. One of the most important reasons is the simplicity of deployment.
Cryptojacking can be easily deployed by inserting a statement in the HTML, such as
<script src=“attacker.com/mining.js”></script>. This allows the attackers to deploy
mining payloads to victim websites without actual control because of XSS or other vul-
nerabilities. The simplicity of cryptojacking leads to the threat of cryptojacking attacks
as long as the cryptocurrency exists. There is no correlation between the existence of
such an attack and whether or not a service is alive.

2.2 Related Web Techniques

In past years, web techniques made tremendous progress, which makes it feasible to
launchmining attacks using web code. For example, the worker mechanisms provide the
possibility of running web code in parallel and the background. WebAssembly/Asm.js
provide chances to run mining code in machine-instruction level.

Asm.js is an embedded domain specific language that serves as a statically typed
assembly-like language. It is a JavaScript subset that allowsweb codewritten in low-level
languages, such asC/C++. In order to apply asm.js in runtime, the function body of asm.js
codemust define with a directive prologue “use asm” or “most asm”.WebAssembly [26]
is an abstraction over modern hardware, making it language-, hardware-, and platform-
independent, with use cases beyond just the Web. WebAssembly is a binary instruction
format (bytecode) for a stack-based virtual machine which is different from a text form
of asm.js. WebAssembly is designed as a portable target for compilation of high-level
languages like C/C++/Rust. Moreover, WebAssembly is committed to getting the speed
closer to the native code, and it is faster than asm.js. Currently, WebAssembly can
be only be loaded and executed by JavaScript, JavaScript calls WebAssembly in three
steps: 1) loading WebAssembly bytecode, 2) compiling bytecode, and 3) instantiating
and executing compiled code.

Asm.js and WebAssembly have similarities in many respects. For example, they are
both statically typed assembly-like languages, and they have similar instruction sets,
which makes it possible for them to convert between each other.

The earnings of cryptojacking attackers are strongly related to the mining speed, so
the attackers implement the core logic of mining with WebAssembly and asm.js. We
suggest it ismore effective and robust to analyze theWebAssembly/asm.js code insteadof
other scaffolding code. Previousworks related toWebAssembly/asm.jsmalware analysis
only concentrate on instruction features, which makes it challenging to classify mining
applications.

MinerGate 55

3 System Overview

3.1 Challenges and Our Solutions

In order to design and implement a generic defense solution against web-based min-
ing attacks, several challenges are raised. More details about these challenges and our
corresponding solutions are discussed below.

• Diverse platforms and devices.Nowadays, many different devices, such as PC,mobile
devices and infrastructure devices, are connected to the Internet. They all are poten-
tially affected by mining attacks. Considering these devices usually have their own
operating systems, it is challenging to offer general protection.
To address it, we design and implementMinerGate as an extension of a network proxy
(e.g., network firewall or gateway). MinerGate can protect all devices behind it. In
practice, once a mining attack occurs, MinerGate can enforcedly stop the attack code
and alert network administrators.
Please also note that considering HTTPS are frequently used, we assume that Min-
erGate can monitor all network traffic, including HTTPS-based communication.
This can be achieved by installing MinerGate’s certificate in all devices under the
protection.

• Obfuscated web code. Web code, especially the code injected by adversaries, is fre-
quently obfuscated in practice. This poses challenges to extracting adversaries’ essen-
tial mining code. To address the problem, MinerGate instruments the web code and
hijack crucial global JavaScript APIs, which are helpful to extract the parameters
related to mining code.
However, due to the natural flexibility of JavaScript, adversaries may still bypass
the above solution. To deal with this issue, we introduce a self-calling anonymous
function to protect instrumented web code, and carefully handle the creation of new
JavaScript contexts.

• Unknownmining semantics.As introduced in Sect. 2,WebAssembly/asm.js have been
widely deployed in web mining code. However, up to known, their inside semantics
are still unclear, especially considering there are already many variants of the existing
mining code. This may significantly reduce the detection accuracy.
To address this problem, we do program analysis on WebAssembly/asm.js code and
extract all call graph (CG) and control flow graph (CFG). Although CG and CFG are
basic things for program analysis, automatically generating CG and CFG is still not
an easy task, especially considering indirect-call instructions are frequently used.

• Difficulty of mining code determination.WebAssembly/asm.js is frequently used not
only in mining but also in another area, such as gaming and data processing. It is
difficult to distinguish between them accurately. In this work, we address this issue
by applying machine learning. However, although existing work discovered a variety
of features available for machine learning, they may cause high false positives.
Instead, we extract features from mining semantics (e.g., CG and CFG) and obtain
high accuracy. However, it is challenging to apply graph-based features in machine
learning, which cause performance issues and affect scalability. To handle it, we
analyze the code in units of semantic modules instead of functions or files to break
the solid lines in the analysis.

56 G. Yu et al.

• Difficulty of stopping mining code. Once mining attacks occur, hardware resources
(e.g., CPU and memory) may be immediately occupied by adversaries. This poses
challenges to stopping the corresponding malicious code in time.
To deal with this problem, we stop the execution of the mining thread through the
function hijacking beforehand and cut off the source of malicious code.
As shown in Fig. 2, MinerGate contains three major modules: 1) JavaScript Instru-
mentation, which is used to instrument network traffic to inject stub.js for extracting
WebAssembly/asm.js code, and enforcing security rules; 2) Machine Learning Based
Detection, which can do program analysis on payloads to extract semantic-related fea-
tures; 3) Security Enforcement, which defines and enforces security rules. For each
module, more details are presented in the following sections.

3.2 JavaScript Instrumentation

As introduced in Sect. 3, MinerGate injects the JavaScript file “stub.js” into all web code
to extract WebAssembly/asm.js code and apply security enforcement. This is achieved
by hijacking and instrumenting several crucial JavaScript APIs. Please also keep in mind
that the stub.js file is always placed at the beginning of web code, which can ensure all
target JavaScript APIs are already instrumented before they are actually used by mining
code.

In the next subsections, we explain how stub.js works. Furthermore, we also present
our protection,which prevents adversaries bypass or destroy stub.js and our instrumented
JavaScript APIs.

WebAssembly/asm.js Code Extraction: Our JavaScript API hijacking solution is
designed based on the key observation: no matter where adversaries save the mining
code, such as a URL or encrypted string, the key JavaScript APIs, such as WebAssem-
bly.instantiate for WebAssembly must be called. Hence, in stub.js, we hijack
all crucial JavaScript APIs to extract and collect all required parameters, which are sent
back to MinerGate for further analysis. These hijacked APIs are listed in Table 1.

Table 1. Hooked APIs for WebAssembly mining payload extraction.

WebAssembly API Description

instantiate() Compiles and instantiates WebAssembly code

instantiateStreaming() Compiles and instantiates a module from a streamed source

compile() Compiles a Module from WebAssembly binary code

compileStreaming() Compiles a Module from a streamed source

Module() Synchronously compiles WebAssembly binary code to a Module

Let us use WebAssembly.instantiate as an example to describe how these
APIs are hijacked and instrumented. Because JavaScript is a dynamic language, all
objects canbe replaced so thatwe can forge aWebAssembly.instantiate function

MinerGate 57

object and replace the original one. In this fake function, we first use a WebSocket
connection to send the function parameter (the WebAssembly payload) asynchronously
to the gateway and continue to execute the original code. No matter how the mining
code is saved and how the code is obfuscated, the mining code will be identified and sent
to MinerGate. In addition, the payload is sent asynchronously, without blocking code
execution and increasing overhead.

For asm.js, we need some extra effort to extract them. Since attacker can dynamically
invoke the asm.js compiler by APIs like eval, Function, etc. We need to hijack any
API that will trigger code compilation. As introduced in Sect. 2, before the asm.js code is
parsed and compiled, it must be defined with the prologue directive “use asm” or “most
asm” [6]. This principle offers hints to extract asm.js code from APIs. More specifically,
we first do syntax analysis on the parameter of eval to build the AST. Next, we scan the
AST to identify all functions. Then, we check each function to determine the existence
of “use asm”. Finally, in addition to the asm.js that appear directly in the HTTP traffic,
the payloads found in the API are also sent to the gateway for analysis.

In addition to extracting WebAssembly/asm.js code, stub.js are also used to enforce
security rules. More details are discussed in Sect. 3.5.

(function () {
var ori_api=WebAssembly.instantiate;
WebAssembly.instantiate = function (buf, importObj){
if (isMalicious(buf)) {
// Refuse to load malicious modules.
return null;

} else {
return ori_api(buf, importObj);

}
};

})();
// Variable "ori_api" will not able to be accessed out of the scope.

Protections on stub.js: The stub.js solution can effectively extract the mining code and
apply security enforcement. However, there are still several ways that adversaries may
bypass and destroy the solution. To mitigate the problem, we provide the following
protections:

• Locating original APIs. Considering if adversaries can find and access that variable,
adversaries may still normally and freely use the hijacked APIs. To address this issue,
we place stub.js inside a self-calling anonymous function. As a result, even though
adversaries may find the local variables where the original APIs are saved in, such as
calling Function.toString() to check the source code of the hijacked APIs,
adversaries cannot still access them.

Furthermore, to improve the security of toString() and hide our defenses
roughly, we can also hijack the function toString() to confuse the attackers.

58 G. Yu et al.

• Starting a newweb context. Mining codemay use worker and iframe to run themining
payload in the background to keep the responsiveness of themain thread. Sinceworker
and iframe create new JavaScript contexts, existing hijackedAPIs becomes ineffective
in the new contexts. Hence, stub.js is required to be executed again and right after the
initialization of the new contexts. To achieve it, the worker and iframe object are also
hijacked through Web traffic instrumentation.

More specifically, for a worker, we implement a worker agent object to protect the
crucial API Worker. When a worker is created, an agent object is returned for replace-
ment. This worker agent has the same interface as the native worker, but it will stitch
the stub.js together with the original code to protect the APIs existing in the worker. We
also emphasize that any subsequent calls to the worker API within this context will be
protected, regardless of how it is called.

In addition to the protection mentioned above, to respond to some existing attack
methods [18], such as prototype poisoning, abusing the caller-chain, etc., our work also
includes defense against these attacks.

3.3 Machine Learning Based Detection

As discussed in Sect. 1, the simple heuristic features used by prior approaches may
cause high false positives. This is because applications in the real world may con-
tain instruction patterns similar to mining algorithms, such as video decoding and data
encryption/decryption. This scenario makes it difficult to determine the type of pro-
grams based on the occurrences of specific instructions without context. To achieve
higher accuracy, we mainly improve from two aspects. On the one hand, we add more
features through data-driven feature selection; on the other hand, we divide the code
into different “modules” by running the clustering algorithm on the function call graph,
which helps us reduce data dimensions, improve the performance and enhance resistance
to code obfuscation. The overall classification flow is described in Fig. 3.

Fig. 3. The classification flow of a WebAssembly module.

CG and CFG Generation. It is worth noting that our program analysis is mainly done
on WebAssembly code. There are several reasons. First, the asm.js code can be easily
converted to WebAssembly bytecodes (e.g., using the “asm2wasm” tool). Second, the

MinerGate 59

WebAssembly language is well designed. Its bytecodes are simple, clean, and also easier
for analysis.

Our analysis is done as follows. First, once the reference (e.g., URL or string)
of WebAssembly/asm.js code is obtained, MinerGate constructs the corresponding
WebAssembly binary file. Language transformation is also required if the asm.js code
is faced. Next, all instructions are carefully analyzed. In a function, adjacent regular
instructions (without branch and function invocation instructions) stick together as a
basic block. Branch and function invocation instructions link different blocks. Consid-
ering the simplicity of WebAssembly bytecodes, this graph construction work can be
easily done.

However, there is also a challenge raised in the process. When an indirect function
invocation instruction is faced, it is difficult to determine the target function. Our solution
is based on the observation: in runtime, when the instruction is executed, the target
function’s prototype Ftarget must matches the function prototype Fexpected determined
by instruction itself. Therefore,MinerGate retrievesFexpected , and scan all functions with
proper prototypes to determine the callee function candidates. To avoid false negatives,
MinerGate links the function invocation instruction with all function candidates. Our
evaluation also shows this simple solution also has relatively low false positives.

CFG Features. The critical point in mining code detection is the feature section,
because of previous work relied on heuristic methods, we use data-driven feature selec-
tion to fill up the missing part of CFG in existing methods by statistics of the graph.
Most graph analysismethods rely on graph statistics. Graph statistics can be used to com-
pare graphs, classify graphs, detect anomalies in graphs, and so on. Graph’s structure
is mapped to a simple numerical space through graph statistic, in which many standard
statistical methods can be applied.

In this paper, we introduce graph statistics as an essential part of the analysis of
WebAssembly/asm.js. Examples of graph statistics are the number of nodes or the num-
ber of edges in a graph, but also more complex measures such as the diameter. Overall,
graph statistic can be roughly divided into two categories, global statistics, and nodal
statistics. The former describes the global properties of the graph, so only one number
is needed for each graph to describe an attribute, and the latter describes the attributes of
the nodes in the graph, so each attribute is represented by a vector. In order to analyze the
CFG graph as a whole, we use global statistics of the graph as our CFG features, such
as graph size, graph volume, graph diameter, etc. When selecting the statistical features
of the graph, we mainly consider the work of [3, 14, 33].

Instruction features. CryptoNight [27], which is a hash algorithm and heavily used
in mining software, explicitly targets mining on general CPUs rather than on ASICs or
GPUs. For efficient mining, the algorithm requires about 2 MB of high-speed cache per
instance. Cryptography operations, such as XOR, left shift and right shift, are commonly
used in CryptoNight algorithm so that we will examine their influences here. In addition
to this, we also consider other instructions, not limited to the instructions described
earlier, such as various control flow related instructions, memory access instructions,
arithmetical operation instructions, and so on.

60 G. Yu et al.

3.4 Data-Driven Feature Selection

We obtained 114 candidate features through the above steps. In our model, we assume
that the functions in the mining samples are all related to mining, besides they are
mining-related after our manual analysis, and the functions in the benign samples are
not related to mining. For the estimation of dependence between features and classes,
we use the χ2 Test [8], which is commonly used in machine learning algorithms to test
dependence between stochastic variables. Following this, we will get scores of features
which can be used to select the top N features with the highest values. Part of the top
features are shown in the Table 2.

Table 2. Top features

Features Category

Max size of basic blocks Graph

CFG size Graph

CFG volume Graph

Max out degree Graph

CFG diameter Graph

Number of loops Graph

Number of branches Graph

Number of branches Instruction

Number of memory instructions Instruction

Number of arithmetical instructions Instruction

Number of cryptography instructions Instruction

Number of instruction get_local Instruction

Number of instruction set_local Instruction

We can see from the Table 2 that the graph-related features aremore effective than the
instruction features, which may be due to the special CFG patterns of the mining code.
We can also find that it confirms the previous results [13, 32], cryptography instructions
do have influences on the classification results. However, those CFG-related features
are more relevant to results. Besides, memory access instructions also showed in the
ranking, which is consistent with the fact that the mining code is a memory-intensive
application.

Overall, we demonstrate the effects of CFG features and their impact in this section.
We will select the top 10 features in the ranking as the basis for subsequent analysis, so
each function is represented by a vector of length 10. At this point, we get the features
of each function.

Semantic Signature Matching. The instruction features or CFG features we discussed
earlier can measure the functionality of a piece of code, such as a function or an entire
file. The next problem is how to use these features to ensure effectiveness and robustness.

MinerGate 61

When we examine a payload by analysis of each function, it is difficult to set a
proper threshold of malicious functions to discriminate malicious samples. There are
many reasons for this dilemma. For example, a library for encryption, it may contain a
small number of functions similar to the mining code. On the other hand, malware can
also hide in many unrelated code and minimize the number of functions. Similarly, we
also face a similar problem when we analyze the payload as a whole.

In this section, we use DBSCAN [28] clustering algorithm to break the solid lines
in the analysis. Specifically, we divide the functions into modules according to the
call graph (CG), then we generate feature vectors for each module. With clustering
functions together, we combine tightly coupled functions into one module, which breaks
the boundary between functions, reduces the complexity of data dimension, and enhances
the ability against code obfuscation.

DBSCAN is one of the most well-known tools for clustering based on density. The
algorithmgrows regionswith sufficiently high density into clusters and discovers clusters
of arbitrary shape in spatial databases with noise. A significant advantage of DBSCAN is
that it does not require the number of clusters a priori, unlike k-means, which needs to be
specified manually. The number of modules in a payload is uncertain, and the DBSCAN
can determine the number of clusters for us. Another advantage is that it does not rely on
Euclidean distance, because it is inappropriate to convert the CG to Euclidean distance.

The algorithm requires two parameters: ε-neighborhood of points and the minimum
number of points (MinPts) required to formadense region. In order to apply the algorithm
to our domain, we need to redefine the ε-neighborhoodN∈(p) of a point (a function in this
paper), N∈(p) = {q ∈ D|if p calls q}, in which D means the database of the functions.

When MinPts = 4, the results of the cluster analysis on the mining payload of
CoinHive are shown in Fig. 4. For the sake of brevity, only functions related to cryp-
tonight_hash_variant_1 are included in the figure. It can be seen that functions
related to cryptonight_hash_variant_1 are divided into two clusters. With
manual analysis, it can be seen that the functions in Cluster 1 are mainly related to
encryption, and functions in Cluster 2 are mainly related to memory operations. The
main reason for this result is that the effect of code is closely related to the functions it
calls.

Then we generate the feature vectors for each module with the methods described
in Sect. 3.3, which combine with the labels will be used to train the SVM classifier. If
the analysis result for a sample contains one or more malicious “modules”, we label the
whole sample as malicious.

3.5 Security Enforcement

Although the user is executing malicious code while detection is occurring, the main
threat of cryptojacking is it occupies a lot of system resources, insteadof stealing sensitive
information or damaging the system like traditional malware. As long as it can prevent
its operation in time, its impact is limited. Our security enforcement is mainly provided
in the injected stub.js (Sect. 3.2). With detection of the mining code, MinerGate notifies
stub.js through pre-establishedWebSocket connection. This connection can be kept alive
even when CPU, memory, and network are occupied by mining code.

62 G. Yu et al.

f20

f11

_malloc f14 f12 f31

_cryptonight_hash_variant_1

f21 _aesb_single_round f9

Cluster 1.

Cluster 2.

Fig. 4. The clustering result on CoinHive with MinPts = 4, only includes functions that are
related to cryptonight_hash_variant_1.

Stub.js can also apply pre-defined security rules. For example, stub.js can directly
terminate the execution of the mining code. This is achieved by stopping the worker
or removing the iframe with preset callback functions, and mining code running in the
main thread of the web page will be closed immediately. Hijacked APIs (e.g., eval,
WebAssembly.instantiate, etc.) in users’ browser will refuse to execute code
that are marked as untrusted.

The mining code needs to use WebSocket to communicate with the mining pool
to obtain the necessary parameters for mining. After discovering the mining payloads,
MinerGate can stop the WebSocket connection in the same context by API hooking,
so that we can cut off the communications between the miner and the mining pools to
forcefully terminate the mining activities.

4 Evaluation

In our evaluation, we first verify the correctness of MinerGate by testing MinerGate in
a real environment. Then, we check MinerGate’s performance, and confirm MinerGate
introduces relatively low overhead. Last, we verify the accuracy of MinerGate.

Our test environment consists of PCs with different OS (i.e., Windows 10 version
1809, macOS 10.14.4, and Ubuntu 18.04), and smartphones (Nexus 5 with Android 6).

4.1 Dataset

There are currently no reliable labeled mining site datasets or WebAssembly/asm.js
datasets. To investigate the deployment of WebAssembly in the real world, we deployed
a distributed crawler cluster on Azure using Kubernetes to acquire WebAssembly files.
The crawlers in the cluster are built uponChromeand are driven by the “stub.js” described
in Sect. 3.2. The cluster includes 120 crawler instances running on the top of 15 physical

MinerGate 63

nodes. We crawled the Alexa top 1 M sites and randomly selected 10 different URLs
from each top site for the next level of crawling. For each website, we spend up to 30 s
to load the page and close the page after 10 s. If WebAssembly is detected on the page,
the page will be closed immediately (Table 3).

Table 3. Summary of our dataset and key findings

Crawling period Apr. 25, 2019 - May. 13, 2019

of crawled websites 10.5 M

of benign web pages with WebAssembly/asm.js 5,030

of benign WebAssembly/asm.js from NPM 946

of malicious mining related web pages 4,659

As a result, we visited a total of 10.5 M pages and found 9,689 web pages containing
WebAssembly code, which covers 2,657 registered domains (such as bbc.co.uk) and
3,012 FQDNs (such as forums.bbc.co.uk), and 1,118 top sites contain the WebAssem-
bly code in their home page. The top 15 categories of websites that have deployed
WebAssembly are shown in Table 4.

Table 4. Top 15 categories of websites which include WebAssembly.

Categories #

Adult Content 595

News/Weather/Information 410

Blogs 199

Video & Computer Games 137

Streaming Media 105

Technology & Computing 92

Illegal Content 82

File Sharing 76

Television & Video 61

Sports 38

Weapons 36

Movies 32

Message Boards 31

Shopping 31

Arts & Entertainment 31

64 G. Yu et al.

To build our training dataset of cryptojacking code, we first match the existing
blacklist (uBlock [25], NoCoin [24] and CoinBlockerLists [35]) based on the source
URL of WebAssembly/asm.js. If the payloads are from the blacklist URLs, we label
the sample as malicious. Some previously unknown mining samples were recognized
by reverse engineering analysis with JEB decompiler [21]. Through examination, we
found 164 benign WebAssembly samples in 3296 pages (1,735 websites), 55 kinds of
malicious WebAssembly, and 6 kinds of malicious asm.js samples in 4659 pages (832
websites) for cryptojacking attacks.We also found that there are 25 undetectedmalicious
WebAssembly samples with the help of VirusTotal [29]. It is worth mentioning that
many mining service providers will provide a different bootstrap JavaScript to avoid
detection each time they are accessed, but the WebAssembly payloads extracted from
them are generally the same. This means that we can analyze the key WebAssembly or
asm.js to obtain better analysis results. The top 15 categories of websites which bring
Crypto-jacking attacks are shown as Table 5.

Table 5. Top 15 categories of websites which include Cryptojacking.

Categories #

Adult Content 148

Illegal Content 64

News/Weather/Information 61

File Sharing 42

Technology & Computing 36

Sports 29

Television & Video 27

Streaming Media 26

Video & Computer Games 24

Comic Books/Anime/Manga 22

Arts & Entertainment 16

Movies 14

Web Design/HTML 12

Music & Audio 11

Arts & Entertainment 10

To further build a ground-truth set of non-cryptojacking WebAssembly/asm.js sam-
ples, we installed all the packages that be tagged as WebAssembly/asm.js from NPM,
which is the largest JavaScript software registry. After the installation is complete, we
extract the WebAssembly and asm.js files from the installation folder. The projects we
collected include various kinds of libraries and applications, such as video coding, data
encryption, data processing, web framework, image processing, physics engine, game
framework, and so on. We will publish these samples with labels for future research.

MinerGate 65

4.2 Accuracy

In this section, we examine MinerGate’s classification accuracy on the ground-truth
training dataset and compare it with other existing detection techniques. In order to
accurately measure the performance of the classifier, we ran 10-fold ross-validation on
our dataset. As shown in Fig. 5, the complete MinerGate performs with 99% precision,
98% recall and 99% f1-score. We can also see that the accuracy rate has been greatly
improved after adding CFG features and cluster analysis.

Fig. 5. Results of Cryptojacking discrimination and comparison to other approaches.

In addition to this, the results of Minesweeper [12] are not satisfactory enough. One
reason is that they use Chrome’s undocumented API (-dump-wasm-module) to dump
WebAssembly. But this API cannot dump WebAssembly loaded by instantiateStream-
ing() or compileStreaming(). To this end, we have implemented a modified version of
MineSweeper to take advantage ofWebAssembly dumped using our system.As shown in
Fig. 5, MineSweeper tends to classify samples as malicious, resulting in lower accuracy
and high recall.

4.3 Overhead

First, we test the overhead introduced byMinerGate on benign websites that do not con-
tain WebAssembly/asm.js code. We evaluated the overhead of the system by accessing
1,000 benignweb pages andmeasuring the load time of web pages by enabling/disabling
the proxy. The overhead is about 6%, and we found that there is only the overhead of a
proxy in this case, because our protected code is only triggered if the WebAssembly is
loaded.

Then, we test the overhead on infected websites. We still evaluated the overhead
by accessing 1,000 malicious web pages and measuring the load time of web pages by
enabling/disabling the proxy. We do not prohibit the execution of the mining program
during the overhead evaluation, as this behavior itself will speed up the access of the
web page. The overhead is less than 9%, the extra overhead here is mainly from the
transmission of WebAssembly.

66 G. Yu et al.

The transparent proxy itself has no complicated operations. It simply inserts our
protection code in the response after the browsermakes the request. This is different from
the instrumentation in the general sense. Therefore, the transparent proxy’s overhead is
less than 9% in our evaluation. Since eachmodule ofMinerGate is independent, it can be
deployed in a distributed manner. To be noticed, both the code injection module and the
malicious code analysis module can be independently deployed on multiple machines,
so the impact of multiple devices on performance is limited.

Since we have considered performance issues when considering hooks, all code that
involves external calls is asynchronous, and onlyminor performance impacts occurwhen
the program calls a function that is hooked. So overall, our instrumentationwill not affect
the efficiency of JavaScript. But the time at which the gateway analyzes the code is still
important because malicious code can consume a lot of power or block the execution
of necessary transactions during the analysis. For background analysis, we plot Fig. 6
which shows the time needed to process different sizes of WebAssembly files.

Fig. 6. The time for processing different sizes of WebAssembly in the background.

5 Related Work

Until now, there is no practical generic defense solution against Web-based cryptojack-
ing attacks. One of the limitations of existing methods is that the semantic model of the
mining payload is not efficient enough to distinguish between malicious mining appli-
cations and benign applications. More importantly, there is currently no non-intrusive
defense solution, and all existing work requires modifications to the browser and even
the operating system. In this paper, we first apply the CFG (control flow graph), CG (call
graph) features to the malicious WebAssembly/asm.js classification, which reviews the
problem from another perspective. Since the payload analysis is static, the MinerGate
provides a lightweight defense and requires no browser modification by deploying the
system to the gateway. The results of comparison with other existing related works are
shown in the Table 6.

MinerGate 67

Table 6. Comparison with other related works.

Name Scalable (No
browser
modification)

JavaScript
obfuscation
resistance

Security
enforcement

Low
overhead

Low
false
positives

Used features

MineSweeper
[12]

× √ × √ × CPU,
WebAssembly
Instructions,
etc.

SEISMIC
[32]

× √ × × × WebAssembly
Instructions,
etc.

BMDetector
[17]

× × × √ × JavaScript
heap and
stack info, etc.

Outguard
[12]

× √ × √ × JavaScript
loading, etc.

CMTracker
[10]

× √ × √ × JavaScript
stack info, etc.

MinerGate
√ √ √ √ √

CG, CFG,
WebAssembly
instructions

Blacklist or Keyword-Based Methods. Some dedicated extensions [24, 25], browsers
[2, 22] provide blacklists and keywords to alleviate cryptojacking by manually running
honeypot [23] and collecting URLs on reports to expand the list. However, the updates
of blacklists and keywords are hard to keep up with the iterative steps of malicious code,
which makes the defense always behind the attack.

Instruction Features Based Methods. In the work of Konoth et al. [13], they use static
analysis to count the number of cryptographic instructions (i32.add, i32.and,
i32.shl, i32.shr_u, i32.xor) and loops to detect CryptoNight algorithm.
The work of Wang et al. [32] is similar, but the number of instructions is calculated by
dynamic instrumentation. However, these cryptographic instructions also exist in many
benign applications, such as data encryption, image processing, video encoding, game
engines and so on, which will make it difficult to classify these samples accurately.

Stack Dump-Based Methods. The critical observation of stack dump-based methods
is that cryptocurrency miners run mining workloads with repeated patterns. In the work
of Hong et al. [10], shows that a regular web page rarely repeats the same calling stack
for more than 5.60% of the execution time. However, such performance profile requires
modifications to the browser kernel, which makes it impractical. In the work of Liu [17],
they extract string features from heap and stack snapshot and use RNN to detect the
mining programs. This type of method built on strings or keywords is unreliable and can
be easily bypassed by JavaScript code.

68 G. Yu et al.

6 Conclusions and Future Work

With a deeper understanding of the semantics of WebAssembly/asm.js, we designed
a novel generic defense solution MinerGate against Web-based cryptojacking attacks.
By decentralizing computing tasks to the gateway, we implemented a common pro-
tection scheme with the lowest overhead in known scenarios, which does not require
modification of the browser. Through data-driven feature selection, we not only further
demonstrate the effectiveness of instruction-level features but also indicate the excellent
performance of CFG features in malicious code detection.

The main limitations exist in two aspects. First of all, considering that JavaScript is
a highly dynamic and continuously evolving language, it is difficult to prove that the
APIs we intercept is always complete. On the other hand, since this work uses a machine
learning-based method, there is the possibility of constructing adversary samples, and
we may need extra work to defend against it.

Acknowledgments. This project is supported by National Natural Science Foundation of China
(No. 61972224).

References

1. Ana, A.: Report: Some crypto mining apps remain in Google play store despite recent ban
(2018). https://cointelegraph.com/news/report-some-crypto-mining-apps-remain-in-google-
play-store-despite-recent-ban. Accessed 21 Nov 2019

2. Andrea, M.: Firefox: implement cryptomining URL-classifier (2019). https://hg.mozilla.org/
mozilla-central/rev/d503dc3fd033. Accessed 01 May 2020

3. Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex
weighted networks. Proc. Natl. Acad. Sci. 101(11), 3747–3752 (2004)

4. Catalin, C.: New browser attack lets hackers run bad code even after users leave a web page
(2019). https://www.zdnet.com/article/new-browser-attack-lets-hackers-run-bad-code-even-
after-users-leave-a-web-page/. Accessed 01 May 2020

5. Daniel, P.: 8 illicit crypto-mining windows apps removed from microsoft store (2019).
https://www.coindesk.com/8-illicit-crypto-mining-windows-apps-removed-from-microsoft-
store. Accessed 01 May 2020

6. David, H., Luke, W., Alon, Z.: asm.js working draft (2018). http://asmjs.org/spec/latest/
7. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. Commun. ACM

61(7), 95–102 (2018)
8. Pearson, K.: X. on the criterion that a given system of deviations from the probable in the case

of a correlated system of variables is such that it can be reasonably supposed to have arisen
from random sampling. London Edinburgh Dublin Philos. Mag. J. Sci. 50(302), 157–175
(1900). https://doi.org/10.1080/14786440009463897

9. Group, W.C.: Webassembly specification (2018). https://webassembly.github.io/spec/core/_
download/WebAssembly.pdf. Accessed 01 May 2020

10. Hong, G., et al.: How you get shot in the back: a systematical study about cryptojacking in
the real world. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, pp. 1701–1713. ACM, New York (2018). https://doi.
org/10.1145/3243734.3243840. http://doi.acm.org/10.1145/3243734.3243840

https://cointelegraph.com/news/report-some-crypto-mining-apps-remain-in-google-play-store-despite-recent-ban
https://hg.mozilla.org/mozilla-central/rev/d503dc3fd033
https://www.zdnet.com/article/new-browser-attack-lets-hackers-run-bad-code-even-after-users-leave-a-web-page/
https://www.coindesk.com/8-illicit-crypto-mining-windows-apps-removed-from-microsoft-store
http://asmjs.org/spec/latest/
https://doi.org/10.1080/14786440009463897
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf
https://doi.org/10.1145/3243734.3243840
http://doi.acm.org/10.1145/3243734.3243840

MinerGate 69

11. npm Inc.: npm — the heart of the modern development community (2018). https://www.
npmjs.com/. Accessed 01 May 2020

12. Kharraz, A., et al.: Outguard: detecting in-browser covert cryptocurrency mining in the wild
(2019)

13. Konoth, R.K., et al.: Minesweeper: an in-depth look into drive-by cryptocurrency mining
and its defense. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1714–1730. ACM (2018)

14. Kunegis, J.: KONECT – the Koblenz network collection. In: Proceedings of International
Conference on World Wide Web Companion, pp. 1343–1350 (2013). http://dl.acm.org/cit
ation.cfm?id=2488173

15. Newman, L.H.: Hack brief: hackers enlisted Tesla’s public cloud to mine cryptocurrencies
(2018). https://www.wired.com/story/cryptojacking-tesla-amazon-cloud/. Accessed 01 May
2020

16. Lindsey, O.: Cryptojacking attack found on los angeles times website (2018). https://threat
post.com/cryptojacking-attack-found-on-los-angeles-times-website/130041/. Accessed 01
May 2020

17. Liu, J., Zhao, Z., Cui, X., Wang, Z., Liu, Q.: A novel approach for detecting browser-based
silent miner. In: Proceedings - 2018 IEEE 3rd International Conference on Data Science in
Cyberspace, DSC 2018, Guangzhou, China, pp. 490–497. IEEE, June 2018. https://doi.org/
10.1109/DSC.2018.00079. https://ieeexplore.ieee.org/document/8411900/

18. Magazinius, J., Phung, P.H., Sands, D.: Safe wrappers and sane policies for self protecting
JavaScript. In: Aura, T., Järvinen, K., Nyberg, K. (eds.) NordSec 2010. LNCS, vol. 7127,
pp. 239–255. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27937-9_17

19. Neil, B.: Kaspersky reports 13 million cryptojacking attempts this year, January 2018. https://
www.cryptolinenews.com/2018/12/13-million-cryptojacking-says-kaspersky/. Accessed 01
May 2020

20. Newman, L.H.: Now cryptojacking threatens critical infrastructure too (2018). https://www.
wired.com/story/cryptojacking-critical-infrastructure/. Accessed 01 May 2020

21. Nicolas, F., Joan, C., Cedric, L.: Jeb decompiler (2018). https://www.pnfsoftware.com/jeb/.
Accessed 01 May 2020

22. Opera: Cryptojacking test (2018). https://cryptojackingtest.com/. Accessed 01 May 2020
23. Prakash: Drmine (2018). https://github.com/1lastBr3ath/drmine/. Accessed 01 May 2020
24. Rafael, K.: Nocoin (2018). https://github.com/keraf/NoCoin/. Accessed 01 May 2020
25. Raymond, H.: ublock (2018). https://github.com/gorhill/uBlock/. Accessed 01 May 2020
26. Rossberg, A., et al.: Bringing the web up to speed with webassembly. Commun. ACM 61(12),

107–115 (2018). https://doi.org/10.1145/3282510
27. Seigen, Max, J., Tuomo, N., Neocortex, Antonio, M.J.: Cryptonight hash function (2013).

https://cryptonote.org/cns/cns008.txt. Accessed 01 May 2020
28. Simoudis, E., Han, J., Fayyad, U.M. (eds.): Proceedings of the Second International Confer-

ence on Knowledge Discovery and DataMining (KDD 1996), Portland, Oregon, USA. AAAI
Press (1996). http://www.aaai.org/Library/KDD/kdd96contents.php

29. VirusTotal: Virustotal (2018). https://www.virustotal.com/. Accessed 01 May 2020
30. W3C: Web workers (2015). https://www.w3.org/TR/workers/. Accessed 01 May 2020
31. W3C: The websocket api. https://www.w3.org/TR/websockets/. Accessed 01 May 2020
32. Wang, W., Ferrell, B., Xu, X., Hamlen, K.W., Hao, S.: SEISMIC: SEcure in-lined script

monitors for interrupting cryptojacks. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS
2018. LNCS, vol. 11099, pp. 122–142. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-98989-1_7

33. Watts,D.J., Strogatz, S.H.:Collective dynamics of ‘small-world’ networks.Nature 393(6684),
440 (1998)

https://www.npmjs.com/
http://dl.acm.org/citation.cfm?id=2488173
https://www.wired.com/story/cryptojacking-tesla-amazon-cloud/
https://threatpost.com/cryptojacking-attack-found-on-los-angeles-times-website/130041/
https://doi.org/10.1109/DSC.2018.00079
https://ieeexplore.ieee.org/document/8411900/
https://doi.org/10.1007/978-3-642-27937-9_17
https://www.cryptolinenews.com/2018/12/13-million-cryptojacking-says-kaspersky/
https://www.wired.com/story/cryptojacking-critical-infrastructure/
https://www.pnfsoftware.com/jeb/
https://cryptojackingtest.com/
https://github.com/1lastBr3ath/drmine/
https://github.com/keraf/NoCoin/
https://github.com/gorhill/uBlock/
https://doi.org/10.1145/3282510
https://cryptonote.org/cns/cns008.txt
http://www.aaai.org/Library/KDD/kdd96contents.php
https://www.virustotal.com/
https://www.w3.org/TR/workers/
https://www.w3.org/TR/websockets/
https://doi.org/10.1007/978-3-319-98989-1_7

70 G. Yu et al.

34. Wikipedia: Cryptocurrency (2018). https://en.wikipedia.org/wiki/Cryptocurrency. Accessed
01 May 2020

35. ZeroDot1: Coinblockerlists (2018). https://zerodot1.gitlab.io/CoinBlockerListsWeb/index.
htm. Accessed 01 May 2020

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://en.wikipedia.org/wiki/Cryptocurrency
https://zerodot1.gitlab.io/CoinBlockerListsWeb/index.htm
http://creativecommons.org/licenses/by/4.0/

	MinerGate: A Novel Generic and Accurate Defense Solution Against Web Based Cryptocurrency Mining Attacks
	1 Introduction
	2 Background
	2.1 Cryptocurrency Mining and Cryptojacking Attacks
	2.2 Related Web Techniques

	3 System Overview
	3.1 Challenges and Our Solutions
	3.2 JavaScript Instrumentation
	3.3 Machine Learning Based Detection
	3.4 Data-Driven Feature Selection
	3.5 Security Enforcement

	4 Evaluation
	4.1 Dataset
	4.2 Accuracy
	4.3 Overhead

	5 Related Work
	6 Conclusions and Future Work
	References

