Skip to main content

Optimized Reconfigurable Autopilot Design for an Aerospace CPS

  • Chapter
  • First Online:
Book cover Computational Intelligence for Decision Support in Cyber-Physical Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 540))

Abstract

A modular flight control strategy is presented here to demonstrate the improved command tracking performance with fault tolerance and reconfiguration capabilities. The modular control design process consists of inner and outer loop design concept, where outer baseline controller feedback loop ensures the stability and robustness and inner reconfigurable design is responsible for the fault-tolerance against actuator faults/failures. This guarantees augmented autonomy and intelligence on board aircraft for real time decision and fault tolerant control. Requirements for aerospace cyber physical systems (ACPS) and software are far more stringent than those found in industrial automation systems. The results shows that fault tolerant aspect is mandatory for ACPS, that must support real time behavior and also requires ultra-high reliability as many systems or/sub-systems are safety critical and require certification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Butts, N. Sivashankar, J. Sun, Feedforward and feedback design for engine idle speed control using l1 optimization, in Proceedings of the American Control Conference, 1995, pp. 2587–2590

    Google Scholar 

  2. A. Tarau, B. De Schutter, H. Hellendoorn, Centralized versus decentralized route choice control in dcv-based baggage handling systems, in International Conference on Networking, Sensing and Control, 2009. ICNSC’09, 2009, pp. 334–339

    Google Scholar 

  3. W. Wang, D.E. Rivera, K.G. Kempf, Centralized model predictive control strategies for inventory management in semiconductor manufacturing supply chains, in Proceedings of the American Control Conference, 2003, pp. 585–590

    Google Scholar 

  4. C. Vermillion, J. Sun, K. Butts, Modeling, control design, and experimental validation of an overactuated thermal management system for engine dynamometer applications. IEEE Trans. Control Syst. Technol. 17, 540–551 (2009)

    Article  Google Scholar 

  5. M.S. Kim, C.S. Chung, The robust flight control of an uav using mimo qft: ga-based automatic loop-shaping method, in Systems Modeling and Simulation: Theory and Applications, pp. 467–477 (2005)

    Google Scholar 

  6. Härkegård, Ola, and S. Torkel Glad. Resolving Actuator Redundancy—optimal control vs. control allocation. Automatica 41(1), 137–144 (2005)

    Google Scholar 

  7. O. Harkegard, Dynamic control allocation using constrained quadratic programming. J. Guid. Control Dyn. 27, 1028–1034 (2004)

    Article  Google Scholar 

  8. Y. Luo, A. Serrani, S. Yurkovich, D.B. Doman, M.W. Oppenheimer, Model predictive dynamic control allocation with actuator dynamics, in Proceedings of the American Control Conference, 2004, pp. 1695–1700

    Google Scholar 

  9. J. Tjonnas, T.A. Johansen, Optimizing adaptive control allocation with actuator dynamics, in 2007 46th IEEE Conference on Decision and Control, 2007, pp. 3780–3785

    Google Scholar 

  10. T.A. Johansen, T.P. Fuglseth, P. Tøndel, T.I. Fossen, Optimal constrained control allocation in marine surface vessels with rudders. Control Eng. Pract. 16, 457–464 (2008)

    Article  Google Scholar 

  11. O. Sørdalen, Optimal thrust allocation for marine vessels. Control Eng. Pract. 5, 177–185 (537)

    Google Scholar 

  12. S.P. Berge, T.I. Fossen, Robust control allocation of overactuated ships; experiments with a model ship, in Proceedings of the 4th IFAC Conference on Manoeuvring and Control of Marine Craft, vol. 537, pp. 20–25

    Google Scholar 

  13. T.A. Johansen, Optimizing nonlinear control allocation, in 43rd IEEE Conference on Decision and Control, 544, CDC. 544, vol. 4, pp. 3435–3440

    Google Scholar 

  14. T.A. Johansen, T.I. Fossen, P. Tøndel, Efficient optimal constrained control allocation via multiparametric programming. J. Guidance Control Dyn. 28, 506–515

    Google Scholar 

  15. K.P. Lindegaard, T.I. Fossen, Fuel-efficient rudder and propeller control allocation for marine craft: experiments with a model ship. IEEE Trans Control Syst. Technol. 11, 850–862

    Google Scholar 

  16. R.H. Shertzer, D. Zimpfer, P.D. Brown, Control allocation for the next generation of entry vehicles, in AIAA Guidance, Navigation, and Control Conference and Exhibit

    Google Scholar 

  17. Y. Luo, A. Serrani, S. Yurkovich, M.W. Oppenheimer, D.B. Doman, Model-predictive dynamic control allocation scheme for reentry vehicles. J. Guidance Control Dyn. 30, 100–113

    Google Scholar 

  18. O. Härkegård, Efficient active set algorithms for solving constrained least squares problems in aircraft control allocation, in Proceedings of the 41st IEEE Conference on Decision and Control, 542, vol. 2, pp. 1295–1300

    Google Scholar 

  19. K.A. Bordignon, Constrained control allocation for systems with redundant control effectors, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, 1996

    Google Scholar 

  20. J.M. Buffington, Tailless aircraft control allocation. Tech. Rep., DTIC Document, 1997

    Google Scholar 

  21. J.H. Plumlee, D.M. Bevly, A.S. Hodel, Control of a ground vehicle using quadratic programming based control allocation techniques, in Proceedings of the American Control Conference, 2004, vol. 5, pp. 4704–4709

    Google Scholar 

  22. B. Schofield, T. Hagglund, A. Rantzer, Vehicle dynamics control and controller allocation for rollover prevention. IEEE International Conference on Control Applications Computer Aided Control System Design, 546, IEEE International Symposium on Intelligent Control, IEEE, pp. 3–8

    Google Scholar 

  23. J. Tjoennas, T.A. Johansen, Adaptive optimizing dynamic control allocation algorithm for yaw stabilization of an automotive vehicle using brakes, in 14th Mediterranean Conference on Control and Automation, 546. MED’06, 546, pp. 1–6

    Google Scholar 

  24. P. Tøndel, Constrained optimal control via multi-parametric quadratic programming, Ph.D. thesis, Norwegian University of Science and Technology, 543

    Google Scholar 

  25. J. Tjonnas, T.A. Johansen, Stabilization of automotive vehicles using active steering and adaptive brake control allocation. IEEE Trans. Control Syst. Technol. 18, 545–558 (2010)

    Article  Google Scholar 

  26. D.B. Doman, M.W. Oppenheimer, D. Sigthorsson, Dynamics and control of a biomimetic vehicle using biased wingbeat forcing functions: Part ii: Controller. AIAA, Washington, 1024 (2010)

    Google Scholar 

  27. K.S. Jung, Y.S. Baek, Force distribution of a six-legged walking robot with high constant speed. J. Mech. Sci. Technol. 14, 131–140 (2000)

    Google Scholar 

  28. S. Sreenivasan, K. Waldron, S. Mukherjee, Globally optimal force allocation in active mechanisms with four frictional contacts. J. Mech. Des. 118(3), 353–359 (1996)

    Article  Google Scholar 

  29. M.P.J. Fromherz, W.B. Jackson, Force allocation in a large-scale distributed active surface. IEEE Trans. Control Syst. Technol. 11, 641–655 (2003)

    Google Scholar 

  30. K. Bordignon, J. Bessolo, Control allocation for the X-35b, in 2002 Biennial International Powered Lift Conference and Exhibit, 2002

    Google Scholar 

  31. J.B. Davidson, F.J. Lallman, W.T. Bundick, Real-time adaptive control allocation applied to a high performance aircraft, in 5th SIAM Conference on Control & Its Application, 2001, pp. 1211–1229

    Google Scholar 

  32. O. Harkegard, Backstepping and control allocation with applications to flight control, Ph.D. dissertation, Linkoping universitet, 2003

    Google Scholar 

  33. J.Q. Leedy, Real-Time Moment Rate Constrained Control Allocation for Aircraft with a Multiply-Redundant Control Suite, Ph.D. thesis, Virginia Polytechnic Institute and State University, 1998

    Google Scholar 

  34. W.C. Durham, Computationally efficient control allocation. J. Guid. Control Dyn. 24(3), 519–524 (2001)

    Article  Google Scholar 

  35. K.R. Scalera, A comparison of control allocation methods for the F-15 ACTIVE research aircraft utilizing real-time piloted simulations, Ph.D. thesis, Virginia Polytechnic Institute and State University, 1999

    Google Scholar 

  36. M. Bodson, Evaluation of optimization methods for control allocation. J. Guidance Control Dyn. 25 (2008)

    Google Scholar 

  37. A.H. Khan, Z. Weiguo, Z.H. Khan, S. Jingping, Evolutionary computing based modular control design for aircraft with redundant effectors. Procedia Eng. 29, 110–117 (2012)

    Article  Google Scholar 

  38. A.H. Khan, Z. Weiguo, S. Jingping, Z.H. Khan, Optimized reconfigurable modular flight control design using swarm intelligence. Procedia Eng. 24, 621–628 (2011)

    Article  Google Scholar 

  39. M.A. Bolender, D.B. Doman, M.W. Oppenheimer, Application of piecewise linear control allocation to reusable launch vehicle guidance and control, in 14th Mediterranean Conference on Control and Automation, 2006. MED’06, 2006, pp. 1–10

    Google Scholar 

  40. J.A.M. Petersen, Algorithms for optimal real-time control allocation, Ph.D. dissertation, 2003

    Google Scholar 

  41. J.A.M. Petersen, M. Bodson, Interior-point algorithms for control allocation. J. Guid. Control Dyn. 28, 471–480 (2005)

    Article  Google Scholar 

  42. Y. Hattori, K. Koibuchi, T. Yokoyama, Force and moment control with nonlinear optimum distribution for vehicle dynamics, in Proceedings of the 6th International Symposium on Advanced Vehicle Control (2002), pp. 595–600

    Google Scholar 

  43. R.C. Eberhart, Y. Shi, J. Kennedy, Swarm intelligence, Morgan Kaufmann, 2001

    Google Scholar 

  44. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of the IEEE International Conference on Neural Networks, vol. 4 (1995), pp. 1942–1948

    Google Scholar 

  45. Z.L. Gaing, A particle swarm optimization approach for optimum design of pid controller in avr system. IEEE Trans. Energy Convers. 19, 384–391 (2004)

    Article  Google Scholar 

  46. N. Jin, Y. Rahmat-Samii, Parallel particle swarm optimization and finite-difference timedomain (pso/fdtd) algorithm for multiband and wide-band patch antenna designs. IEEE Trans. Antennas Propag. 53, 3459–3468 (2005)

    Article  Google Scholar 

  47. Y. del Valle, G.K. Venayagamoorthy, S. Mohagheghi, J.C. Hernandez, R.G. Harley, Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12, 171–195 (2008)

    Article  Google Scholar 

  48. R. Poli, Analysis of the publications on the applications of particle swarm optimization. J. Artif. Evol. Appl. 2008, 3 (2008)

    Google Scholar 

  49. Y. Shi, R. Eberhart, A modified particle swarm optimizer, in Proceedings of the 1998 IEEE International Conference on Evolutionary Computation (IEEE World Congress on Computational Intelligence, 1998), pp. 69–73

    Google Scholar 

  50. R.C. Eberhart, Y. Shi, Tracking and optimizing dynamic systems with particle swarms, in Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1 (2001), pp. 94–100

    Google Scholar 

  51. P. Fourie, A. Groenwold, The particle swarm optimization algorithm in size and shape optimization. Struct. Multidiscip. Optim. 23, 259–267 (2002)

    Article  Google Scholar 

  52. Y.L. Zheng, L.H. Ma, L.Y. Zhang, J.X. Qian, On the convergence analysis and parameter selection in particle swarm optimization, in Proceedings of the 2003 International Conference on Machine Learning and Cybernetics, vol. 3 (2003), pp. 1802–1807

    Google Scholar 

  53. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of the IEEE International Conference on Neural Networks, vol. 4 (1995), pp. 1942–1948

    Google Scholar 

  54. M. Nasri, H. Nezamabadi-Pour, M. Maghfoori, A PSO-based optimum design of pid controller for a linear brushless dc motor. World Acad. Sci., Eng. Technol. 26, 211–215 (2007)

    Google Scholar 

  55. C.N. Ko, C.J. Wu, A PSO-tuning method for design of fuzzy PID controllers. J. Vib. Control 14, 375–396 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  56. M.I. Solihin, W. Akmeliawati, R. Akmeliawati, PSO-based optimization of state feedback tracking controller for a flexible link manipulator, in Proceedings of the International Conference of Soft Computing and Pattern Recognition, 2009 (SOCPAR’09) (2009), pp. 72–76

    Google Scholar 

  57. S.A. Ghoreishi, M.A. Nekoui, S.O. Basiri, Optimal design of LQR weighting matrices based on intelligent optimization methods. IJIIP: Int. J. Intell. Inf. Process., AICIT 2, 63–74 (2011)

    Article  Google Scholar 

  58. D. Enns, Control allocation approaches, in Proceeding of the AIAA Guidance, Navigation, and Control Conference (1998)

    Google Scholar 

  59. M. Grant, S. Boyd, Y. Ye, Disciplined convex programming, in Global Optimization (Springer, New York, 2006), pp. 155–210

    Google Scholar 

  60. M. Grant, Disciplined convex programming. Ph.d. dissertation, Stanford University (2004)

    Google Scholar 

  61. M. Grant, S. Boyd, Y. Ye, cvx users’ guide. Technical Report Build 711, Citeseer (2009), http://citeseerx.ist.psu.edu/viewdoc/download

  62. J. Mattingley, S. Boyd, CVXGEN: a code generator for embedded convex optimization, in Optimization and Engineering (2012), pp. 1–27

    Google Scholar 

  63. W.C. Durham, K.A. Bordignon, Multiple control effector rate limiting. J. Guid. Control Dyn. 19, 30–37 (1996)

    Article  Google Scholar 

  64. S.A. Frost, M. Bodson, Resource balancing control allocation. Am. Control Conf. (ACC) 2010, 1326–1331 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arsalan H. Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Khan, A.H., Khan, Z.H., Khan, S.H. (2014). Optimized Reconfigurable Autopilot Design for an Aerospace CPS. In: Khan, Z., Ali, A., Riaz, Z. (eds) Computational Intelligence for Decision Support in Cyber-Physical Systems. Studies in Computational Intelligence, vol 540. Springer, Singapore. https://doi.org/10.1007/978-981-4585-36-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-4585-36-1_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4585-35-4

  • Online ISBN: 978-981-4585-36-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics