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Abstract. AI for science (AI4S) is an emerging research field that aims
to enhance the accuracy and speed of scientific computing tasks us-
ing machine learning methods. Traditional AI benchmarking methods
struggle to adapt to the unique challenges posed by AI4S because they
assume data in training, testing, and future real-world queries are in-
dependent and identically distributed, while AI4S workloads anticipate
out-of-distribution problem instances. This paper investigates the need
for a novel approach to effectively benchmark AI for science, using the
machine learning force field (MLFF) as a case study. MLFF is a method
to accelerate molecular dynamics (MD) simulation with low computa-
tional cost and high accuracy. We identify various missed opportuni-
ties in scientifically meaningful benchmarking and propose solutions to
evaluate MLFF models, specifically in the aspects of sample efficiency,
time domain sensitivity, and cross-dataset generalization capabilities. By
setting up the problem instantiation similar to the actual scientific ap-
plications, more meaningful performance metrics from the benchmark
can be achieved. This suite of metrics has demonstrated a better ability
to assess a model’s performance in real-world scientific applications, in
contrast to traditional AI benchmarking methodologies. This work is a
component of the SAIBench project, an AI4S benchmarking suite. The
project homepage is https://www.computercouncil.org/SAIBench.

1 Introduction

Benchmarks are extensively utilized in computer science research and the IT
industry to assess and compare the performance patterns of various types of
entities, from abstract and mathematically specified problem definitions and al-
gorithms to fully materialized software + hardware systems [6,20]. The term
“benchmark” originated from land measurement practices, where marks were
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carved onto a stone, creating a “fixture” for mounting measurement equipment.
Modern computer science benchmarks follow a similar concept. To measure per-
formance metrics, a “fixture” is created by instantiating the target problem into
a standardized set of computing resources and tasks. For instance, in machine
learning benchmarks, problem instantiation is achieved by mapping high-level
goals (e.g., image classification) to a concrete dataset, such as ImageNet [9]. A
critical factor in benchmarking is to ensure that the problem instantiation aligns
with the stakeholders’ interests. In the context of machine learning benchmarks,
this means that the chosen dataset should cover all typical scenarios implied by
the high-level goals. Consequently, if a machine learning model performs well on
the dataset, it is expected to perform well in real-world applications.

AI for science (AI4S) is an emerging research field that focuses on leveraging
machine learning methods to improve accuracy and speed in scientific computing
tasks [16,23]. Benchmarking AI4S is crucial, as it allows scientific researchers to
evaluate the quality of an AI4S machine learning model and ensure its successful
integration into the scientific computing pipeline.

The ultimate goal of AI4S is to assist scientific researchers in exploring the
unknown, which often challenges fundamental assumptions in machine learning.
For instance, traditional machine learning assumes that the training and test-
ing instances share the same distribution, and so do instances from any future
queries. While this assumption works well with traditional workloads such as
object recognition in ImageNet, where the dataset is indeed randomly sampled
from all possible objects “in the wild”, a scientific computing pipeline is well ex-
pected to encounter entirely new instances. In other words, the “in-distribution”
assumption fails in AI4S scenarios, where encountering “out-of-distribution” data
is anticipated.

Consequently, traditional AI benchmarking methods struggle to adapt to the
AI4S context due to this “out-of-distribution” challenge. Good performance in
training and simple testing no longer guarantees that the model will perform
well when integrated into a real-world scientific computing pipeline. Adhering
to conventional AI benchmarking practices will invariably result in a biased
problem instantiation that is misaligned with the objectives of AI4S.

This ponders the question: do we need to carry over the practices from con-
ventional AI benchmarking by collecting a comprehensive dataset like ImageNet,
or do we need a completely different approach to benchmark AI for science effec-
tively? In this paper, we study a particular example in AI for science, molecular
dynamics (MD) simulations. MD simulation serves as a crucial tool that is exten-
sively employed in chemical physics, materials science, biophysics, and related
fields. MD simulation models the motion of atoms and molecules within a chem-
ical system and how it evolves over time. Machine learning was proposed to
accelerate MD simulation. At the core of the machine learning acceleration lies
the machine learning force field (MLFF), which computes the forces applied to
each atom in the chemical system.

We identify numerous missed opportunities in scientifically meaningful bench-
marking MLFF models, and we propose solutions that allow us to investigate



Title Suppressed Due to Excessive Length 3

the behavior of MLFF models in greater detail. Our contribution is as follows. 1.
We propose an evaluation of the sample efficiency of MLFF models, specifically
focusing on their performance in scenarios with sparse data. This is in contrast
to conventional AI workloads, such as large-scale language models and image
recognition tasks, which often have access to vast amounts of data. 2. While
conventional AI benchmarks assume that the samples in the dataset are inde-
pendent and identically distributed, we propose to take advantage of the fact
that the MD simulation produces time-series data, and we furthermore evaluate
the time domain sensitivity of the models. 3. Contrasting to conventional AI
benchmarks that typically treat different datasets as separate entities, we pro-
pose the development of cross-dataset generalization tests for MLFF models. 4.
While our primary objective is to evaluate the performance of MLFF models, we
also uncover an intriguing correlation between the test results and a similarity
metric known as Smooth Overlap of Atomic Positions (SOAP). This discovery
can, in turn, help us to improve the simulation pipeline.

2 Preliminaries

MD simulation is an essential tool that simulates atomic motions within chemical
systems, providing key insights for computational chemistry, biology, and physics
to unravel thermodynamic and kinetic phenomena. The key of an MD simulation
is to integrate atomic motion by applying computed forces to each atom and
subsequently displacing atoms following Newton’s Second law f i = miai, where
f i, mi, ai are the force, mass, and acceleration of atom i. Traditionally, the
atomic forces are computed with empirical inter-atomic potentials or with ab
initio methods as the negative gradient of potential energy (Eq. 1).

f i = − ∂

∂xi
E(x1,x2, . . . ,xn) (1)

In empirical potentials, the potential energy functionals are relatively simple
analytical equations, such as in Lennard-Jones potential [15]. They often assume
that each atom is only affected by its neighboring atoms,

f i = − ∂

∂xi
Ei(xi,xj1 ,xj2 , . . . ,xjni

) (2)

where jk are atoms that are close to the atom i with |xjk − xi| < rcut. This
locality assumption leads to an O(Natom) complexity for classical force fields.
On the other hand, the ab initio methods solve Schrödinger’s equation to obtain
potential energy, with a complexity of O(NK

electron), K = 3 − 5. Even though
the empirical potentials are easy to compute and often scale linearly with the
number of atoms Natom, they are limited to systems without the formation and
breaking of chemical bonds. In contrast, ab initio MD (AIMD) methods incor-
porate quantum mechanic effects, providing a more precise representation of the
potential in chemical reactions, albeit at the expense of prohibitive computation
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time. This accuracy-cost trade-off makes it prohibitive to use MD simulation to
model systems with chemical reactions.

Machine learning enables a new solution, MLFF, to solve this accuracy-cost
trade-off problem. It uses neural networks [5] or Gaussian Process [2] for the
potential energy functional. The functional is more complicated than empirical
force fields but keeps the O(Natom) scaling. Hence MLFF can scale up to large
molecular systems that were previously impossible to simulate with empirical
force fields while maintaining an acceptable level of accuracy [14].

As mentioned before, MD simulation is an iterative process where each step
computes the forces applied to each atom in the system. Based on the force
field, the algorithm iteratively updates the velocities and positions of the atoms
over time steps, generating a trajectory of the molecular system that illustrates
the evolution of the system over time. Given a chemical system of Natom atoms,
the force field takes the cartesian coordinates and atomic numbers as input and
outputs the potential energy and forces as written in Eq. 1

The construction and training of MLFF constitute the following steps.

1. Obtain training data from ab initio methods, which contains cartesian co-
ordinate x1,x2, . . . ,xN , atomic numbers z1, z2, . . . , zN , total potential E,
and forces f1,f2, . . . ,fN . For simplicity, all the variables can be written as
matrices: x,F ∈ RN×3, Z ∈ RN×3, E ∈ R, where F = − ∂

∂XE.
2. construct a machine learning model

Ẽ, F̃ = F(X, z) (3)

where F can be a neural network or a Gaussian Process model.
3. Design a loss function L over both the forces and the energy. An example is

to use mean square error.

L =
∑
batch

[α(E − Ẽ)2 + β
∑
i

∑
u=x,y,z

(fi,u − f̃i,u)
2] (4)

4. Optimize the functional F over the training data, to minimize L.
5. Evaluate the performance of the trained model.

3 Related Works

The rapid development of MLFF models [3,18,21] has garnered significant inter-
est in various applications, such as drug discovery and material design. These
applications require high numerical accuracy from MD simulations, making the
quality of a trained MLFF model crucial for successful deployment. As high-
lighted by [10,22], a suboptimal MLFF model can introduce errors in the pre-
dicted potential energy and forces, which accumulate throughout the iterative
simulation steps. These accumulated errors can result in simulation failures,
manifesting as non-physical conformations of the chemical system or numerical
runaway conditions.
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Numerous benchmarking suites have been developed to evaluate machine
learning workloads [11,13,17]. The evaluation metrics chosen by each benchmark
correspond to the interests of the stakeholders. For instance, machine learning
model benchmarks emphasize convergence rate and accuracy and focus on met-
rics such as the validation and test loss function performance, while industrial AI
benchmarks prioritize cost-efficient model deployment [12] and concentrate on
performance metrics such as model throughput and hardware resource utiliza-
tion. Recently, benchmarks specifically targeting AI for science are also proposed
[19], which carries over the methodologies of conventional AI benchmarking.

In the context of MLFF, the primary interest of stakeholders lies in the
successful integration of the MLFF model into MD simulations. However, con-
ventional benchmarking methods encounter difficulties in accurately reflecting
this objective. Traditional AI evaluation metrics primarily concentrate on sta-
tistical performance across the entire dataset; however, Tong et al. [22] observed
that failures in MD simulations with MLFFcan likely be traced back to a few
poor force predictions, resulting in irrecoverable error accumulation. Moreover,
conventional AI evaluation metrics are derived directly from the difference be-
tween model output and ground truth data, while Tian et al. [10] pointed out
that stability in simulation does not align with training and testing performance.
Therefore, we argue that conventional benchmarking methods are not well suited
for evaluating MLFF.

Despite the efforts in existing works, it remains desirable to characterize
MLFF better. This motivates us to develop a novel benchmark specifically for
MLFF, aiming to ensure MLFF quality.

4 Benchmarking MLFF

The benchmark uses focuses on evaluating NequIP [4], an equivariant graph
neural network architecture specifically designed for learning MLFF from ab-
initio calculations. NequIP emerges as a prominent representative of the state-of-
the-art in this field, distinguished by its exceptional data efficiency and superior
performance when compared to previous HDNN-style neural networks [5] and
kernel-based methods [2]. NequIP’s remarkable data efficiency enables accurate
modeling of MLFF with minimal training data, making it an appealing choice
for scenarios where data availability is limited or costly to obtain.

To assess the performance of the machine learning model, we utilize a bench-
marking fixture created from the revised MD17 (rMD17) dataset [8]. The original
MD17 dataset [7] comprises data points obtained from MD simulation trajecto-
ries based on density functional theory (DFT), encompassing a predefined set
of molecules. The rMD17 dataset further enhances the MD17 dataset by em-
ploying a more accurate level of theory, thereby mitigating numerical noise and
improving data quality. It is important to call out that we adopt a different
fixture setup compared to conventional machine-learning-style practices. In a
conventional machine-learning-style setup, it would assume that the data points
(from both the MD17 and rMD17 datasets) are randomly sampled from the
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Fig. 1: Sample Efficiency Benchmarks

ground truth problem space. Training and testing are subsequently conducted
by randomly partitioning the data into subsets. However, MD17 data points
are drawn from simulated trajectories, resulting in inherent correlations in the
time domain. Consequently, randomly sampling training and test subsets can
lead to the interleaving of data points from different time steps. While this sce-
nario aligns with the ideal situation in MLFF-powered MD, where simulated
data covers a wide range of molecule conformation space, we argue that it is
not the case for the MD17/rMD17 dataset, which will be demonstrated in the
forthcoming experimental results. The rMD17 dataset is often consumed in a
random train/test split manner, as mentioned before because the data points
are not ordered as a trajectory time series. This can be mitigated by sorting the
data with the “old_index” field, which maps the data points back to the origi-
nal MD17 and restores temporal order in the data. Our benchmarking fixture is
established on this calibrated dataset by splitting out the last 10% data in the
time series as the test subset.

4.1 Sample Efficiency

We evaluate the sample efficiency of the model by fixing the training data window
to the first 90% of the trajectory simulated on an aspirin molecule and progres-
sively sample more data (200, 400, 600, 800, 1000, 15000, and 50000 samples,
respectively) from the window into different training subsets, and compare the
performance of trained models on the test subset. The training process for each
subset is given a fixed wall time budget, allowing all to converge properly. We
compare both per-atom force mean average error (MAE) and per-atom energy
MAE for the trained models. The benchmarking results are illustrated in figure 1.

We can see that the model has good sample efficiency, achieving per-atom
energy MAE of less than 4 meV over the test data given only 200 training sam-
ples. More specifically, given a fixed training data window, the performance of
the trained models progressively improves with more training data points. Both
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the performance on energy and forces follow a similar trend, where increasing
the number of samples results in proportional improvements up to 1000 samples,
but the gain decreases exponentially afterward, where the benefit of increasing
the size of the training set from 1K to 15K samples is not as good as increasing
from 200 to 400, albeit at the cost of much longer computational cost spent in
each training epoch.

In conventional AI benchmarking, it is not practical to evaluate the per-
formance on parts of each data point, such as the first ten tokens generated
from a model or the accuracy of prediction about the top-left part of an image.
However, the structural and composable nature of molecular data allows for a
more versatile projection of performance results, providing a unique opportu-
nity to evaluate AI performance in multiple dimensions and giving more insights
into the model’s behavior and capabilities. For example, Figure 1a additionally
presents per-atom forces MAE for each species of atoms (Hydrogen, Carbon,
and Oxygen). The analysis reveals that the error on different species generally
follows the same trend, and the error on Hydrogen is significantly lower than
the others due to its low atomic charge. Interestingly, the errors are not strictly
proportional to the atomic charge of each species, as one might expect the errors
of Oxygen to be proportionally higher than that of Carbon, but the data shows
otherwise.

This observation suggests that force prediction is sensitive to the structural
configuration of the molecule in addition to the invariant features of each atom.
Moreover, it indicates that the model captures more structural information to
reflect the steepness in the potential energy surface than an empirical potential
energy equation.

4.2 Time-series Extrapolation

The previous benchmark evaluates the model performance when the entire range
of trajectory up to the test window is available to the training process. That is,
the model is trained on data sampled from 9 times more time steps (90%) to
predict the immediately upcoming steps (10%). In real-world MLFF-powered
MD simulations, it is expected that the MLFF model should be able to sup-
port longer runs with more time steps, where the training window might not
cover a large number of time steps compared to the inference steps and may not
be immediately adjacent to the inference window. To evaluate the model’s per-
formance under such conditions, multiple variations of benchmarks are created
using a grid-scan method to vary the size of the training window and its starting
point. The training window sizes are set to 30%, 45%, 60%, 75%, and 90% of
the whole trajectory, while the starting points are set to 0%, 15%, 30%, 45%,
and 60% of the whole trajectory. For each of these training window variants,
two models are trained with 1K and 15K data points sampled from the window,
respectively, and their performance is tested on the final 10% of the trajectory.

Figure 2 presents the time-series extrapolation benchmarking results. Each
horizontal line segment in the left part of the chart represents a training win-
dow variant, with starting/ending points in the 0%-90% range. The bar on the
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Fig. 2: Time-Series Extrapolation Benchmarks

right corresponds to the per-atom force MAE evaluated on the test window for
the model trained on this specific training window. The data is sorted by test
performance, with the training window on the first row having the best test
performance. The data shows that the test performance varies significantly with
different training windows, and the patterns differ for 1K and 15K training sam-
ples. For the 1K samples, the best window is the one closest to the test window,
with the narrowest range (60%-90%). In contrast, for the 15K samples, the best
window is the widest (0% to 90%). This observation suggests that, even though
the model demonstrates excellent sample efficiency, 1K samples still lead to un-
derfitting when a large window is used. The reason is that there is not enough
data within each subsection of the window for the model to generalize to similar
cases effectively.
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Fig. 3: Time-Series Extrapolation Benchmarks (projected)

Both the 1K and 15K charts show that a small window temporally distant
from the test window (0%-30%) results in the worst performance. This obser-
vation suggests that maintaining the model’s accuracy over a long trajectory is
challenging, as it may not have enough information from distant data to gener-
alize effectively to the test window.

In order to better evaluate the models trained on different windows, it is
a good idea to project the results by grouping the data by window size and
plotting each group to show the performance changes based on different window
positions. Similarly, we can analyze how the performance changes with different
window sizes for each starting position. This approach is visualized in figure 3.
From the data, it is observed that both 1K and 15K models exhibit a pattern
where, given a fixed window starting position (in short, winpos), the perfor-
mance increases monotonically with the window size, except for 1K samples
with a winpos of 0.15. However, given a fixed window size, the performance
does not monotonically increase as the training window moves closer to the test-
ing window. To understand why this occurs, the SOAP (Smooth Overlap of
Atomic Positions) descriptor [1] is leveraged. The SOAP descriptor computes a
high-dimensional feature vector for a given molecular system, allowing for the
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comparison of different molecular configurations. The correlation between two
molecular configurations can be calculated by computing the cosine similarity of
their corresponding SOAP descriptors. By computing all pairwise correlations
between the training windows with a 30% range and the testing window, the
mean average values are used to represent the similarity of the training windows
to the test window. This information is visualized in figure 4.
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Fig. 4: Training data window vs. Test window SOAP similarity

The similarity curve presented in the figure demonstrates that similarity does
not monotonically increase as the training window moves closer to the testing
window. This result has two significant implications. First, the finding suggests
that the trajectory does not constantly move away from the initial molecular
configuration. Instead, it occasionally "bounces back" into the data distribu-
tion of earlier trajectories. This behavior indicates that the MD simulation may
exhibit a certain degree of periodicity or recurring patterns in the molecular
configurations, which can be essential in understanding the system’s underly-
ing behavior. Second, the result shows a clear relationship between the window
similarity metric and the test performance. This relationship suggests that a
real-world MLFF-powered MD system could leverage this metric as an accuracy
indicator. When the similarity drops below a certain threshold, it signals that
the MLFF-powered MD loop is heading towards out-of-distribution space. In
such cases, the model may require further fine-tuning to maintain accuracy and
stability.

4.3 Cross-Molecule Generalization Benchmarks

The revised MD17 dataset consists of multiple MD simulation trajectories for a
fixed set of molecules. Traditionally, separate benchmarking fixtures are created
for different molecules because cross-molecule performance is poor and consid-
ered impractical for simulation purposes.
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However, it is important to consider this as an opportunity to evaluate the
out-of-distribution generalization capabilities of a target machine learning model.
While the results may not be practical for direct simulation purposes, they can
provide valuable insights into the relationship between the potential energy sur-
faces of different molecules and the fine local structures within these molecules.

(a) Aspirin (b) Ethanol (c) Malonaldehyde (d) Naphthalane

(e) Salicyclic Acid (f) Toluene (g) Uracil

Training Set
Train on 1 molecule f, b, a
Train on 2 molecules ab, bc, de
Train on 3 molecules abg, abd, cef
Train on 4 molecules abeg, bcdf, abce
Train on 5 molecules abceg, abcde, bcdef

Table 1: Dataset Builds For Generalization Benchmarks

First, we deterministically sample 1000 data points from each trajectory.
These datasets are designated ‘a’ to ‘g’ and will be combined to create datasets
that consist of multiple types of molecules. We select three different combinations
of these datasets for one to five types of molecules. The dataset builds are shown
in Table 1. As shown in the table, the datasets are selected to create overlaps
between combinations of the same number of molecule types (for example, abg
vs. abd), and between the combinations of different numbers of molecule types
(for example, ab vs. abg). This allows us to analyze the performance impact of
progressively adding more trajectories to the datasets.

It is important to note that various molecular systems exhibit significantly
different potential energy levels. When merging distinct trajectories into a single
dataset, we normalize the energy levels by conducting a linear regression across
the entire dataset to calculate the reference energy for each type of atom.



12 Yatao Li, Wanling Gao, Lei Wang, Lixin Sun, Zun Wang, and Jianfeng Zhan

abcdefg

Tr
ai

ni
ng

 (b
lu

e)
/Te

st
in

g 
(o

ra
ng

e)
 M

ol
ec

ul
es

0.0 0.2 0.4 0.6 0.8 1.0
Per-Atom Force MAE

a
b
c
d
e
f

(a) All Atoms

abcdefg

Tr
ai

ni
ng

 (b
lu

e)
/Te

st
in

g 
(o

ra
ng

e)
 M

ol
ec

ul
es

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Per-Atom Force MAE (Hydrogen)

a
b
c
d
e
f

(b) Hydrogen

abcdefg

Tr
ai

ni
ng

 (b
lu

e)
/Te

st
in

g 
(o

ra
ng

e)
 M

ol
ec

ul
es

0.0 0.5 1.0 1.5 2.0 2.5
Per-Atom Force MAE (Carbon)

a
b
c
d
e
f

(c) Carbon

abcdefg

Tr
ai

ni
ng

 (b
lu

e)
/Te

st
in

g 
(o

ra
ng

e)
 M

ol
ec

ul
es

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Per-Atom Force MAE (Oxygen)

a
b
c
e

(d) Oxygen

Fig. 5: Cross-Molecule Generalization Benchmarks

After constructing the fixtures, we proceed to train a model for each com-
bined training set and individually evaluate their performance on the trajectories
not present in the combined training set. We intentionally design the test set in
this manner because when trajectory data for a known molecule is being tested,
its performance will be significantly better than that of unseen molecules. Con-
sequently, this would statistically obscure the performance patterns of the latter.
We also remove molecules with a completely unseen species of atom (for example,
Nitrogen in molecule g) in the training set from the test sets.

Furthermore, it is important to note that even if the partial energy contribu-
tions of all atoms are normalized by the reference energy points, the combined
output should still be considered biased. This bias arises because the reference
energy itself contains a high error margin, which would consequently offset the
predicted potential energy level towards the most seen configurations. As a re-
sult, our primary focus lies on the forces where the offset bias is eliminated by
the gradient operator.
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Figure 5 illustrates the cross-molecule generalization evaluation results. Sim-
ilar to previous experiments, we present per-atom force MAE both over all the
atoms and over different atom species. Each row in a plot represents training
conducted on a specific combined dataset and testing conducted on one indi-
vidual unseen molecule. The left side of each plot presents the training (blue)
and testing (orange) molecules, and the horizontal bar on the right presents the
per-atom force MAE.

Upon sorting the rows by testing performance, a distinct pattern emerges,
revealing that certain molecules (such as f and d) are easier to generalize than
others, while some (like c) prove difficult to generalize. Intriguingly, molecules d
and f are the only two that consist of just two types of atoms, namely Hydrogen
and Carbon, while molecule c is the only one that contains two Oxygen atoms
arranged in a symmetrical configuration.

The charts also reveal that different atom species do not consistently gener-
alize best on the same molecule. While molecule f exhibits the overall best gen-
eralization, the top-performing molecule for each atom species varies: molecule
d for Hydrogen, molecule f for Carbon, and molecule e for Oxygen.

This observation implies that the generalization performance is highly sensi-
tive to the local structure and symmetries of the molecules. Although molecule
d is the only one containing two Benzene rings and thus exhibits unique global
structure features, its symmetries and the proximity around each atom resemble
those of other molecules. Conversely, while the inter-atomic distances and dihe-
dral angles in molecule c resemble other molecules, the symmetrical arrangement
of dual Oxygen atoms results in configurations that are largely unseen in other
molecules.

Counter-intuitively, expanding the training data to include a new molecule
does not always enhance the model’s ability to generalize onto a specific molecule.
Rather, we observe that the quality of generalization largely depends on the
similarity between the training and testing molecules. Expanding the training
set to include a molecule with low similarity to the testing molecule will most
likely decrease generalization performance.

This finding suggests that although neural networks excel at processing a
large number of training samples with diverse characteristics, for the specific ap-
plication of MD, if generalization over unseen molecules is a required capability,
it may be more effective to consider the similarities of the molecules instead of
feeding conflicting data into a single model. By partitioning the training data,
training separate models, and dynamically routing the inference to the most
compatible model, we can potentially achieve better generalization performance
across a range of molecular structures.

5 Conclusion

Benchmarking on AI for Science requires careful design to combine the bench-
marking steps for machine-learning-based AI methods and scientific computing.
When the combined approach encounters conflicting assumptions, we override
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the conventional AI benchmarking settings with the scientific computing set-
tings, for example, to embrace out-of-distribution problem instances. The end
result is an interleaved procedure that closely follows the conventional AI bench-
marking practices by creating datasets, training AI models, and evaluating the
performance on the test set but prioritizes scientifically meaningful setups in each
step. More concretely, we demonstrate how this procedure is designed for MLFF-
powered MD, a computational chemistry tool that plays a significant role in
many scientific research applications. Conventionally, MLFF evaluation adopts
methodologies from AI benchmarking. This approach treats data points within
the same trajectory as independent and identically distributed (i.i.d.), while data
points in different trajectories of distinct molecules are considered to be com-
pletely differently distributed, often resulting in separate evaluations. However,
we argue that the evaluation of MLFFs should be tailored to accurately represent
real-world MD computations. This would enable the time-domain correlation of
trajectory data to be exploited in order to assess the generalization capabilities
of an MLFF model when predicting future time steps. Additionally, incorporat-
ing configurations from various molecules would test the model’s adaptability
to previously unseen spatial structures, which are common in chemical reaction
simulations. As a result, this leads to a realistic setup in the context of MLFF
applications. Taking advantage of the scientific research application setup, we
can produce more scientifically meaningful performance metrics from the bench-
mark compared to conventional AI benchmarking methods, and contribute to the
development of more robust and generalizable AI4S machine learning models.
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