
Efficient Enumeration of Drawings and Combinatorial Structures
for Maximal Planar Graphs ⋆

Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati,
Fabrizio Grosso, and Maurizio Patrignani

Roma Tre University, Rome, Italy
{giordano.dalozzo,giuseppe.dibattista,fabrizio.frati,

fabrizio.grosso,maurizio.patrignani}@uniroma3.it

Abstract. We propose efficient algorithms for enumerating the notorious combinatorial structures
of maximal planar graphs, called canonical orderings and Schnyder woods, and the related classical
graph drawings by de Fraysseix, Pach, and Pollack [Combinatorica, 1990] and by Schnyder [SODA,
1990], called canonical drawings and Schnyder drawings, respectively. To this aim (i) we devise an
algorithm for enumerating special e-bipolar orientations of maximal planar graphs, called canonical
orientations; (ii) we establish bijections between canonical orientations and canonical drawings, and
between canonical orientations and Schnyder drawings; and (iii) we exploit the known correspondence
between canonical orientations and canonical orderings, and the known bijection between canonical
orientations and Schnyder woods. All our enumeration algorithms have O(n) setup time, space usage,
and delay between any two consecutively listed outputs, for an n-vertex maximal planar graph.

1 Introduction

In the late eighties, de Fraysseix, Pach, and Pollack [25,26] and Schnyder [52] independently and almost
simultaneously solved a question posed by Rosenstiehl and Tarjan [49] by proving that every maximal planar
graph, and consequently every planar graph, admits a planar straight-line drawing in a O(n)×O(n) grid.
Since resolution and size are measures of primary importance for the readability of a graph representation [28],
the result by de Fraysseix, Pach, and Pollack [25,26] and by Schnyder [52] has a central place in the graph
visualization literature. It also finds heterogeneous applications in other research areas, for example in knot
theory [15,36,37] and computational complexity [7,34,51].

The drawing algorithms presented by de Fraysseix, Pach, and Pollack and by Schnyder have become
foundational for the graph drawing research area; see, e.g., [44,57]. The combinatorial structures conceived for
these algorithms have been used to solve a plethora of problems in graph drawing [1,2,4,20,23,27,30,31,33,41,45]
and beyond [5,11,12,13,18,38,39]. In a nutshell, de Fraysseix, Pach, and Pollack’s algorithm works iteratively,
as it draws the vertices of a maximal planar graph one by one, while maintaining some geometric invariants
on the boundary of the current drawing. The order of insertion of the vertices ensures that each newly added
vertex is in the outer face of the already drawn graph and that such a graph is biconnected; this order is
called canonical ordering (sometimes also shelling order). Schnyder’s algorithm is based on a partition of
the internal edges of a maximal planar graph into three trees rooted at the outer vertices of the graph and
satisfying certain combinatorial properties; these trees form a so-called Schnyder wood. The three paths
connecting each vertex to the roots of the trees define three regions of the plane, and the number of faces of
the graph in such regions determines the vertex coordinates.

At first sight, canonical orderings and Schnyder woods appear to be distant concepts. However, Schny-
der [52] already observed that there is a simple algorithm to obtain a Schnyder wood of a maximal planar
graph G from a canonical ordering of G. The connection between the two combinatorial structures is deeper
than this and it is best explained by the concept of canonical orientation. Given a canonical ordering π of

⋆ Research partially supported by PRIN projects no. 2022ME9Z78 “NextGRAAL: Next-generation algorithms for
constrained GRAph visuALization” and no. 2022TS4Y3N “EXPAND: scalable algorithms for EXPloratory Analyses
of heterogeneous and dynamic Networked Data”.

ar
X

iv
:2

31
0.

02
24

7v
1

 [
cs

.D
S]

 3
 O

ct
 2

02
3

G, the canonical orientation of G with respect to π is the directed graph obtained from G by orienting each
edge away from the vertex that comes first in π. de Fraysseix and Ossona de Mendez [22] proved that there is
a bijection between the canonical orientations and the Schnyder woods of G.

In this paper, we consider the problem of enumerating the above combinatorial structures and the
corresponding graph drawings. The ones we present are, to the best of our knowledge, the first enumeration
algorithms for drawings of graphs. An enumeration algorithm lists all the solutions of a problem, without
duplicates, and then stops. Its efficiency is measured in terms of setup time, space usage, and maximum
elapsed time (delay) between the outputs of two consecutive solutions; see, e.g., [3,42,50,58]. We envisage
notable applications of graph drawing enumeration algorithms with polynomial delay:

(i) The possibility of providing a user with several alternative drawings optimizing different aesthetic
criteria, giving her the possibility of selecting the most suitable for her needs; enumerating techniques
may become an important tool for graph drawing software.

(ii) Machine-Learning-based graph drawing tools are eager of drawings of the same graph for their training;
linear-time delay enumeration algorithms may provide a powerful fuel for such tools.

(iii) Computer-aided systems for proving or disproving geometric and topological statements concerning
graph drawings may benefit from enumeration algorithms for exploring the solution space of graph
drawing problems.

The enumeration of graph orientations has a rich literature. Consider an undirected graph G with n
vertices and m edges. In [19] algorithms are presented for generating the acyclic orientations of G with O(m)
delay, the cyclic orientations with Õ(m) delay, and the acyclic orientations with a prescribed single source
with O(nm) delay; see also earlier works on the same problem [6,54]. In [9] the k-arc-connected orientations
of G are enumerated with O(knm2) delay. Of special interest for our paper is the enumeration of e-bipolar
orientations of G. Let e = (s, t) be an edge of G; an e-bipolar orientation of G (often called st-orientation)
is an acyclic orientation of G such that s and t are the only source and the only sink of the orientation.
de Fraysseix, Ossona de Mendez, and Rosenstiehl [24] provided an algorithm for enumerating the e-bipolar
orientations of G with polynomial delay. Setiawan and Nakano [53] showed how suitable data structures and
topological properties of planar graph drawings can be used in order to bound the delay of the algorithm by
de Fraysseix et al. to O(n), if G is a biconnected planar graph. The link between these algorithm and our
paper resides in another result by de Fraysseix and Ossona de Mendez [22]: They proved that there exists
a bijection between the canonical orientations and the bipolar orientations of G such that every internal
vertex has at least two incoming edges. Our enumeration algorithm for canonical orientations follows the
strategy devised by de Fraysseix et al. [24] and enhanced by Setiawan and Nakano [53] for enumerating
bipolar orientations of biconnected planar graphs. However, the requirement that every internal vertex has at
least two incoming edges dramatically increases the complexity of the problem and reveals new and, in our
opinion, interesting topological properties of the desired orientations.

We present the following main results. Let G be an n-vertex maximal plane graph.

– First, we show an algorithm that enumerates all the canonical orientations of G. The algorithm works
recursively. Namely, it applies one or two operations (edge contraction and edge removal) to G. Each
application of an operation results in a smaller graph, whose canonical orientations are enumerated
recursively and then modified into canonical orientations of G by orienting the contracted or removed
edges.
In order for the recursive algorithm to have small delay, we need to apply an edge contraction or removal
only if the corresponding branch of computation is going to produce at least one canonical orientation of G.
We thus identify necessary and sufficient conditions for a subgraph of G to admit an orientation that can
be extended to a canonical orientation of G. Further, we establish topological properties that determine
whether applying an edge contraction or removal results in a graph satisfying the above conditions. Also,
we design data structures that allow us to efficiently test for the satisfaction of these properties and to
apply the corresponding operation if the test is successful.

– Second, as we show that canonical orderings are topological sortings of canonical orientations, our
algorithm for enumerating canonical orientations allows us to obtain an algorithm that enumerates all

2

canonical orderings of G. Furthermore, as canonical orientations are in bijection with Schnyder woods [22,
Theorem 3.3], our algorithm for enumerating canonical orientations allows us to obtain an algorithm that
enumerates all Schnyder woods of G.

– Third, we show that if we apply de Fraysseix, Pach, and Pollack’s algorithm with two distinct canonical
orderings corresponding to the same canonical orientation, the algorithm outputs the same planar straight-
line drawing of G. This is the key fact that we use in order to establish a bijection between the canonical
orientations of G and the planar straight-line drawings of G produced by de Fraysseix, Pach, and Pollack’s
algorithm. Together with our algorithm for the enumeration of canonical orientations, this allows us to
enumerate such drawings.

– Fourth, we prove that the planar straight-line drawings of G obtained by Schnyder’s algorithm are in
bijection with the Schnyder woods. This, together with the bijection between canonical orientations and
Schnyder woods and together with our algorithm for the enumeration of canonical orientations, allows us
to enumerate the planar straight-line drawings of G produced by Schnyder’s algorithm.

All our enumeration algorithms have O(n) setup time, O(n) space usage, and O(n) worst-case delay.
We remark that a different approach for the enumeration of canonical orientations might be based on

the fact that the canonical orientations of a maximal plane graph form a distributive lattice L [32]. By the
fundamental theorem of finite distributive lattices [8], there is a finite poset P whose order ideals correspond
to the elements of L and it is known that |P | is polynomial in n [32, page 10]. Enumerating the order ideals
of P is a studied problem. In [35] an algorithm is presented that lists all order ideals of P in O(∆(P))
delay, where ∆(P) is the maximum indegree of the covering graph of P . However, the algorithm has three
drawbacks that make it unsuitable for solving our problems. First, the guaranteed delay of the algorithm is
amortized, and not worst-case. Second, the algorithm uses O(w(P) · |P |) = O(n3) space, where w(P) = O(n)
is the width of P , and O(|P |2) = O(n4) preprocessing time. Third and most importantly, each order ideal is
produced twice by the algorithm, rather than just once as required by an enumeration algorithm. Similarly,
the algorithms in [47,55,56] are affected by all or by part of the three drawbacks above.

The paper is organized as follows. Section 2 contains basic definitions and properties. The subsequent
sections show how to enumerate: canonical orientations (Section 3); canonical orderings and de Fraysseix,
Pach, and Pollack drawings (Section 4); and Schnyder woods and Schnyder drawings (Section 5). Conclusions
and open problems are in Section 6.

2 Preliminaries

In the following, we provide basic definitions and concepts.
Graphs with multiple edges. For technical reasons, we consider graphs and digraphs with multiple edges;
edges with the same end-vertices are said to be parallel. We only consider (di)graphs without self-loops,
i.e., edges with identical end-vertices. A graph without parallel edges is said to be simple. For a graph G,
we denote the degree of a vertex v of G by degG(v). Let D be a digraph. A source (resp. sink) of D is a
vertex with no incoming (resp. no outgoing) edges. We say that D is acyclic if it contains no directed cycle.
The underlying graph of D is the undirected graph obtained from D by ignoring the edge directions. An
orientation of an undirected graph G is a digraph whose underlying graph is G.
Planar graphs. A drawing Γ of a graph maps each vertex to a point in the plane and each edge to a
Jordan arc between its end-vertices. The drawing Γ is planar if no two edges cross, it is straight-line if each
edge is mapped to a straight-line segment, and it is a grid drawing if all vertices have integer coordinates.
Clearly, a graph might only admit a planar straight-line drawing if it is simple.

A planar drawing partitions the plane into connected regions, called faces. The only unbounded face
is the outer face; the other (bounded) faces are internal. Two planar drawings of the same connected
planar graph are equivalent if they determine the same circular order of the edges incident to each vertex. A
planar embedding is an equivalence class of planar drawings. A plane graph is a planar graph equipped
with a planar embedding and a designated outer face. When talking about a subgraph G′ of a plane graph G,
we always assume that G′ inherits a plane embedding from G; sometimes we write plane subgraph to stress

3

the fact that the subgraph has an associated plane embedding. A maximal planar graph is a planar graph
without parallel edges to which no edge can be added without losing planarity or simplicity. A maximal
plane graph is a maximal planar graph with a prescribed embedding. A vertex or edge of a plane graph is
internal if it is not incident to the outer face, and it is outer otherwise. An internal edge is a chord if both
its end-vertices are outer.

Let G be a plane graph and let e be an edge of G with end-vertices u and v. The contraction of e in
G is an operation that removes e from G and that “merges” u and v into a new vertex w. Suppose that
the clockwise cyclic order of the edges incident to u is e, eu1 , . . . , e

u
h and that the clockwise cyclic order of

the edges incident to v is e, ev1, . . . , e
v
k. Then, the clockwise cyclic order of the edges incident to w is set to

eu1 , . . . , e
u
h, e

v
1, . . . , e

v
k. Suppose that, in G, there exist a vertex x, an edge e′ = (u, x), and an edge e′′ = (v, x).

Then, the contraction of e in G turns e′ and e′′ into a pair of parallel edges incident to w and x. Also, suppose
that there exists an edge e′ that is parallel to e in G. Then, the contraction of e in G turns e′ into a self-loop
incident to w.
Connectivity. A graph is connected if it contains a path between any two vertices. A cut-vertex (resp.
separation pair) in a graph is a vertex (resp. a pair of vertices) whose removal disconnects the graph. A
graph is biconnected (triconnected) if it has no cut-vertex (resp. no separation pair). Note that a single
edge or a set of parallel edges forms a biconnected graph. A split pair of G is either a pair of adjacent vertices
or a separation pair. The components of G separated by a split pair {u, v} are defined as follows. If e is an
edge of G with end-vertices u and v, then it is a component of G separated by {u, v}; note that each parallel
edge between u and v determines a distinct component of G separated by {u, v}. Also, let G1, . . . , Gk be the
connected components of G \ {u, v}. The subgraphs of G induced by V (Gi) ∪ {u, v}, minus all parallel edges
between u and v, are components of G separated by {u, v}, for i = 1, . . . , k. We will exploit the following.

Property 1. Let H be a biconnected plane graph and let C be a cycle of H. Then the plane graph HC

consisting of the vertices and of the edges of H that lie in the interior or on the boundary of C is biconnected.

Proof: In a biconnected plane graph, each face is bounded by a cycle [59]. Note that all the internal faces of
HC are also internal faces of H. Thus, since H is biconnected, these faces are bounded by cycles. Moreover,
the outer face of HC is bounded by the cycle C, by construction. By [10, Theorem 10.7], if the boundary of
each face of a plane graph is a cycle, then the graph is biconnected. Therefore, HC is biconnected. □

Planar st-graphs. Given two vertices s and t of an undirected graph G, an orientation of G is an st-
orientation if (i) it is acyclic and (ii) s and t are its unique source and unique sink, respectively. A digraph
is a planar st-graph if and only if it is an st-orientation and it admits a planar embedding E with s and t
on the outer face; such a digraph together with E is a plane st-graph. A face f is a ♢-face if its boundary
consists of two directed paths from a common source sf to a common sink tf . The following observations are
well known.

Observation 1 ([21, Lemma 1]) A plane digraph with s and t on the outer face is a plane st-graph if and
only if each of its faces is a ♢-face.

Observation 2 ([28, Lemma 4.2]) Let G be a plane st-graph. Then, all the incoming (resp. all the outgo-
ing) edges incident to any vertex v of G appear consecutively around v.

Let D be a plane st-graph and let e = (u, v) be an edge of D. The left face (resp. right face) of e is the
face to the left (resp. right) of e while moving from u to v. The left path pl (resp. the right path pr) of D
consists of the edges of D whose left face (resp. whose right face) is the outer face of D.

In the following, let G be a maximal plane graph and let (u, v, z) be the cycle delimiting its outer face,
where u, v, and z appear in this counter-clockwise order along the cycle.
Canonical orderings. A canonical ordering of G with first vertex u is a labeling of the vertices
v1 = u, v2 = v, v3, . . . , vn−1, vn = z meeting the following requirements for every k = 3, . . . , n− 1; see Figs. 1a
and 1b and refer to [26].

4

u=v1 v=v2

v3

v4 v5

z=v6

(a)

u=v1 v=v2

z=v6

v3

v5 v4

(b)

u v

z

u

(c)

v

z

u

(d)

Fig. 1: (a), (b) The two canonical orderings with first vertex u of a maximal plane graph G. (c) The unique
canonical orientation with first vertex u of G. (d) The unique Schnyder wood of G.

(CO-1) The plane subgraph Gk ⊆ G induced by v1, v2, . . . , vk is 2-connected; let Ck be the cycle bounding
its outer face;

(CO-2) vk+1 is in the outer face of Gk, and its neighbors in Gk form an (at least 2-element) subinterval of
the path Ck − (u, v).

A canonical ordering of G is a canonical ordering of G with first vertex x, where x is a vertex in
{u, v, z}. Finally, if G′ is a maximal planar graph, a canonical ordering of G′ is a canonical ordering of a
maximal plane graph isomorphic to G′.

Property 2. Let π = (v1 = u, v2 = v, v3, . . . , vn = z) be a canonical ordering of a maximal plane graph G. For
i = 3, . . . , n− 1, each vertex vi has at least two neighbors vj with j < i and one neighbor vj with j > i.

Proof: Recall that, for any i = 3, . . . , n, we denote by Gi the plane subgraph of G induced by v1, v2, . . . , vi.
For i = 4, . . . , n− 1, the fact that vi has at least two neighbors vj with j < i directly follows by condition
(CO-2) of π. Furthermore, v3 is adjacent to v1 and v2, since G3 is biconnected, by condition (CO-1) of π.
Suppose, for a contradiction, that, for some i ∈ {3, . . . , n− 1}, the vertex vi has no neighbor vj with j > i.
By condition (CO-1) of π, we have that Gi is 2-connected. Also, we have that vi is in the outer face of Gi−1;
this comes from condition (CO-2) of π if i > 3, and from the fact that Gi−1 is an edge if i = 3. Hence, vi
is incident to the outer face of Gi. Let k ≥ i be the largest index such that vi is incident to the outer face
of Gk. Let Ck be the cycle delimiting the outer face of Gk. Then vk+1 is adjacent to a vertex that comes
before vi and to a vertex that comes after vi in the path Ck − (u, v), as otherwise vi would also be incident
to the outer face of Gk+1, which would contradict the maximality of k. However, the fact that vk+1 is not
adjacent to vi implies that the neighbors of vk+1 in Gk do not form an interval of Ck − (u, v), a contradiction
to condition (CO-2) of π. □

Canonical orientations. Let π = (v1, . . . , vn) be a canonical ordering of G with first vertex u. Orient every
edge (vi, vj) of G from vi to vj if and only if i < j. The resulting orientation is the canonical orientation
of G with respect to π. We say that an orientation D of G is a canonical orientation with first vertex
u if there exists a canonical ordering π of G with first vertex u such that D is the canonical orientation of G
with respect to π; see Fig. 1c. A canonical orientation of G is a canonical orientation with first vertex x,
where x is a vertex in {u, v, z}. Finally, if G′ is a maximal planar graph, a canonical orientation of G′ is a
canonical orientation of a maximal plane graph isomorphic to G′.
Schnyder woods. A Schnyder wood (T1, T2, T3) of G is an assignment of directions and of the colors 1, 2
and 3 to the internal edges of G such that the following two properties hold; see Fig. 1d and refer to [52]. Let
i− 1 = 3, if i = 1, and let i+ 1 = 1, if i = 3.

(S-1) For i = 1, 2, 3, each internal vertex x has one outgoing edge ei of color i. The outgoing edges e1, e2,
and e3 appear in this counter-clockwise order at x. Further, for i = 1, 2, 3, all the incoming edges at x
of color i appear in the clockwise sector between the edges ei+1 and ei−1.

5

w

P

u

C ′

s v

z

(a)

u

v
Gk

vk+1

z

P

Ck

(b)

u

v

vk+1

z

wm−1

Ck
wr

w2
wp

wq

(c)

Fig. 2: Illustrations for the proof of Theorem 1. (a) Illustration for the proof that w = v3; the directed
path P from w to z is (thick) red, the edge (v, s) is (thin dashed) blue, the edges of the cycle C ′ are thick.
(b) Illustration for the proof that vk+1 lies in the outer face of Gk; the directed path P from vk+1 to z is
(thick) red, the edges of the cycle Ck are thick. (c) Illustration for the proof that the neighbors of vk+1 form
a subinterval of the path Ck − (u, v); the face incident to both wr and vk+1 having length greater than
three is shaded yellow.

(S-2) At the outer vertices u, v, and z, all the internal edges are incoming and of color 1, 2, and 3, respectively.

x

e2

e3

e1
u

z

v

(S-1) (S-2)

Finally, if G′ is a maximal planar graph, a Schnyder wood of G′ is a Schnyder wood of a maximal plane
graph isomorphic to G′.

3 Canonical Orientations

In [22, Lemma 3.6, Lemma 3.7, Theorem 3.3], de Fraysseix and Ossona De Mendez proved the following
characterization, for which we provide here an alternative proof.

Theorem 1 ([22]). Let G be a maximal plane graph and let (u, v, z) be the cycle delimiting its outer face,
where u, v, and z appear in this counter-clockwise order along the cycle. An orientation D of G is a canonical
orientation with first vertex u if and only if D is a uz-orientation in which every internal vertex has at least
two incoming edges.

Proof: (=⇒) Consider any canonical orientation D with first vertex u. We prove that D is a uz-orientation
as in the statement. Let π = (v1 = u, v2 = v, v3, . . . , vn−1, vn = z) be any canonical ordering of G such that
D is the canonical orientation of G with respect to π. By the construction of D from π, an edge (vi, vj) is
directed from vi to vj if and only if i < j. This implies that D is an acyclic orientation, that u is a source in
D, and that z is a sink in D. Furthermore, v2 = v has one incoming edge in D, namely (v1, v2), and at least
one outgoing edge in D, namely (v2, v3). Finally, for i = 3, 4, . . . , n− 1, by Property 2, we have that vi has at
least two incoming edges and at least one outgoing edge in D.

(⇐=) Let D be a uz-orientation in which every internal vertex has at least two incoming edges. We prove
that D is a canonical orientation of G with first vertex u. Consider any topological sorting π = (v1, . . . , vn) of

6

D. We show that π is a canonical ordering of G with first vertex u. Clearly, we have v1 = u and vn = z, as u is
the only source of D and z is the only sink of D. Furthermore, we have v2 = v, as every vertex different from
u and v has at least two incoming edges, and hence at least two vertices come before it in any topological
sorting of D. Let w be the vertex that is incident to an internal face of G together with u and v. We prove
that every vertex of D different from u and v is a successor of w, hence v3 = w. Suppose, for a contradiction,
that there exists a vertex s ̸= w that is a source of the plane digraph D′ obtained from D by removing u
and v; refer to Fig. 2a. Consider any directed path P from w to z in D′ and note that s does not belong
to P . Since s has at least two incoming edges in D, edges from u and v to s exist. Furthermore, in D, the
vertex s lies either in the interior of the cycle C ′ bounded by the edge (u,w), by P , and by the edge (u, z),
or in the interior of the cycle C ′′ bounded by the edge (v, w), by P , and by the edge (v, z). In the former
case, the edge (v, s) crosses C ′, while in the latter case, the edge (u, s) crosses C ′′. In both cases, we get a
contradiction to the planarity of D. This contradiction proves that v3 = w.

It remains to prove that, for k = 3, . . . , n − 1, the ordering π satisfies conditions (CO-1) and (CO-2)
of a canonical ordering. In order to prove condition (CO-1), we proceed by induction on k. In the base
case, k = 3; that G3 is biconnected comes from the fact that it coincides with the cycle (u, v, w). Suppose
now that Gk is biconnected, for some k ∈ {3, . . . , n − 1}. Since vk+1 has at least two incoming edges, by
assumption, and since the end-vertices of such edges different from vk+1 belong to Gk, since π is a topological
sorting of D, it follows that Gk+1 is biconnected, which concludes the proof of condition (CO-1). In order
to prove condition (CO-2), we first prove that, for k = 3, . . . , n− 1, the vertex vk+1 is in the outer face of
Gk (refer to Fig. 2b); suppose, for a contradiction, that vk+1 lies in the interior of Ck. Consider a directed
path P in D from vk+1 to z. Such a path exists as z is the only sink of D; moreover, P does not contain
any vertex of Gk (and hence of Ck) given that π is a topological sorting of D, hence every vertex vj of P
is such that j > k. Since vk+1 lies in the interior of Ck, while z lies in its exterior, by the Jordan curve’s
theorem we have that P crosses Ck, a contradiction which proves that vk+1 is in the outer face of Gk. We
now prove that the neighbors of vk+1 in Gk form an (at least 2-element) subinterval of the path Ck − (u, v);
let (w1 = u,w2, . . . , wm = v) be such a path; refer to Fig. 2c. Let wp and wq be the neighbors of vk+1 such
that p is minimum and q is maximum. Note that p < q, given that vk+1 has at least two incoming edges in
D; that such edges connect vk+1 to vertices in Ck follows by the planarity of G. Suppose, for a contradiction,
that there exists an index r with p < r < q such that wr is not a neighbor of vk+1. Then the internal face
of Gk+1 incident to both vk+1 and wr is also incident to wr−1 and wr+1, hence its length is larger than
three. However, since the vertices vk+2, . . . , vn and their incident edges lie in the outer face of Gk+1, such an
internal face of Gk+1 is also a face of G, a contradiction to the fact that G is a maximal plane graph. This
concludes the proof of condition (CO-2) and of the theorem. □

Our proof of Theorem 1 implies the following.

Lemma 1. Consider any canonical orientation D with first vertex u of a maximal plane graph G. Then any
topological sorting of D is a canonical ordering of G with first vertex u.

Proof: Let (u, v, z) be the cycle delimiting the outer face of G, where u, v, and z appear in this counter-
clockwise order along the cycle. By Theorem 1, we have that D is a uz-orientation in which every internal
vertex has at least two incoming edges. The proof of Theorem 1 shows that every topological sorting of a
uz-orientation in which every internal vertex has at least two incoming edges is a canonical ordering of G
with first vertex u. □

Given two parallel edges h1 and h2 with end-vertices s and x in a plane graph, we denote by ℓ(h1, h2) the
open region of the plane bounded by h1 and h2; we say that ℓ(h1, h2) is a multilens if it contains no vertices
in its interior. Observe that ℓ(h1, h2) might contain edges parallel to h1 and h2 in its interior, or it might
coincide with an internal face of the graph. The leftmost edge of a maximal set of parallel edges is said to be
loose, whereas the other edges of such a set are nonloose. In Fig. 3, any two of the (red) parallel edges r1,
r2, and r3 form a multilens, the two (blue) parallel edges b2 and b3 form a multilens, whereas neither b2 nor
b3 forms a multilens with their (blue) parallel edge b1; the multilenses ℓ(r1, r2), ℓ(r2, r3), and ℓ(b2, b3) are
also faces; loose edges are thick (b3 and r3), whereas nonloose edges are thin (b1, b2, r1, and r2).

The following two definitions introduce the concepts most of this section will deal with.

7

G

b3

b1

r1

r3

t

b2

r2

s

Fig. 3: Illustration for the definition of a well-formed graph.

Definition 1. A biconnected plane graph G with two distinguished vertices s and t is called well-formed if
it satisfies the following conditions (refer to Fig. 3):

WF1: s and t are both incident to the outer face of G and s immediately precedes t in clockwise order along
the cycle Co bounding the outer face;

WF2: all the internal faces of G have either two or three incident vertices;
WF3: multiple edges, if any, are all incident to s; and
WF4: if there exist two parallel edges h1 and h2 with end-vertices s and x such that ℓ(h1, h2) is not a

multilens, then there exist two parallel edges h′
1 and h′

2 between s and a vertex y ̸= x such that ℓ(h′
1, h

′
2)

is a multilens and such that ℓ(h′
1, h

′
2) ⊂ ℓ(h1, h2).

Vertices s and t are called poles of G.

Definition 2. An st-orientation D of a well-formed biconnected plane graph G with poles s and t is inner-
canonical if every internal vertex of G has at least two incoming edges in D.

We introduce notation that will be used throughout this section. Let G be a well-formed biconnected
plane graph with poles s and t. Let (w0 = s, w1, . . . , wk = t) be the right path pr of G. Let e1, e2, . . . , em be
the counter-clockwise order of the edges incident to s, where e1 is the first edge of pr and em is the unique
edge of the left path of G, by Condition WF1. Let v1, . . . , vm be the end-vertices of e1, . . . , em different from
s, respectively. Moreover, denote by G∗ the plane multigraph resulting from the contraction of e1 in G. Also,
if G contains parallel edges, let j ∈ {1, . . . ,m − 1} be the smallest index such that ej and ej+1 define a
multilens of G; denote by G− the plane graph resulting from the removal of e1, . . . , ej from G. The next
lemmata prove that, under certain conditions, G∗ and G− are well-formed multigraphs.

Lemma 2. Suppose that G does not contain parallel edges between s and w1. Then G∗ is a well-formed
biconnected plane graph with poles s and t.

Proof: Since G is biconnected, if G∗ contains a cut-vertex, then this is necessarily s. It follows that
{s, w1} is a split pair of G. Let G1, G2, . . . , Gk be the components separated by {s, w1}, where k ≥ 3 and G1

coincides with the edge (s, w1) of the right path of G. Since G does not contain parallel edges, we have that
G2, . . . , Gk are not single edges. Then the internal face of G that is incident to G2 and G3 is incident to at
least four vertices, a contradiction to Condition WF2 of G. This proves that G∗ is biconnected.

We next prove that G∗ is well-formed; refer to Fig. 4.

– Condition WF1 follows from the fact that the left path of G∗, as well as the left path of G, is the edge
(s, t); this trivially follows from the fact that t ̸= w1, since no two parallel edges between s and w1 exist
in G.

8

t

w3=x4

w4G

x2

x3

x1

w2

w1

s

f

t

w2

w3=x4

w4G∗

x2

x3

x1

s

fe1

Fig. 4: Illustration for the contraction of the edge e1.

– In order to prove Condition WF2, observe that G∗ contains no face incident to a single vertex, as the
same is true for G, by Condition WF2 for G, and since no two parallel edges between s and w1 exist in
G. Furthermore, that every face of G∗ has at most three incident vertices descends from the fact that G
satisfies Condition 2 and that the contraction of an edge cannot increase the number of vertices incident
to a face.

– Condition WF3 follows from the fact that G satisfies Condition WF3 and that G∗ is obtained from G by
the contraction of an edge that has s as an end-vertex; thus, new multiple edges, if any, are all incident
to s.

– Finally, we prove Condition WF4. Consider any pair (e1, e2) of parallel edges of G
∗ such that ℓ(e1, e2) is

not a multilens. By Condition WF3, both e1 and e2 are incident to s. If e1 and e2 are also parallel edges
of G (that is, they do not become parallel edges because of the contraction of (s, w1)), then there exist
two parallel edges e3 and e4 such that ℓ(e3, e4) is a multilens and such that ℓ(e3, e4) ⊂ ℓ(e1, e2) in G∗ as
the same is true in G, given that G satisfies Condition WF4. Otherwise, e1 and e2 are not parallel in G.
Let x1, x2, . . . , xk be the common neighbors of s and w1 in G, listed in the order in which they appear in
a clockwise visit of the adjacency list of w1, starting at the vertex x1 that belongs to the internal face f
of G incident to (s, w1). Let e

◦ = (s, x1) and e⋄ = (w1, x1) be the edges incident to f and different from
(s, w1). Consider any pair (e1, e2) of parallel edges of G

∗ that are not parallel in G and such that ℓ(e1, e2)
is not a multilens. Then we have e1 = (s, xi) and e2 = (s, xi), with 2 ≤ i ≤ k. However, in G∗, it holds
that the edges e◦ and e⋄ define a multilens and that ℓ(e◦, e⋄) ⊂ ℓ(e1, e2). Therefore Condition WF4 holds
for G∗.

This concludes the proof that G∗ is well-formed, and the proof of the lemma. □

Lemma 3. Suppose that G contains parallel edges and let j ∈ {1, . . . ,m− 1} be the smallest index such that
ej and ej+1 define a multilens of G. Suppose also that either j = 1, or j > 1 and v2, . . . , vj are not incident
to the outer face of G. Then the graph G− is a well-formed biconnected plane graph with poles s and t.

Proof: We start with the proof for the case in which j = 1. In this case, we have that e2 is also an edge
between s and w1. Then G− clearly is a well-formed biconnected plane graph with poles s and t. In particular,
although G− does not contain the multilenses of G which have e1 on their boundary, no bounded region
delimited by two parallel edges contains such multilenses in its interior in G, given that e1 is incident to the
outer face of G.

We now consider the case in which j > 1 and v2, . . . , vj are not incident to the outer face of G; refer
to Fig. 5. We first prove that G− is biconnected. In order to do that, we just need to prove that its outer
face is bounded by a cycle, as the biconnectivity then follows from Property 1. By the minimality of j, for
i = 1, . . . j, the internal face of G delimited by ei and ei+1 is triangular. Consider the plane subgraph P of G

9

t

e1

e2

G

em

t

w3

w4G−

em

P P

ej+1

w2

w3

w4

w1

vj

s

ej

vj

s

w2

w1

(a) There exist parallel edges between s and w1.

t

w2

w3

w4

w1

P
e1

e2

ej

G

vj

em

G−

s

t

w2

w3

w4

w1

P

ej+1

vj

em

s

(b) There exist no parallel edges between s and w1.

Fig. 5: Illustration for the removal of the edges e1, . . . , ej .

formed by the edges of such triangular faces that are not incident to s. We argue that P is a path between w1

and vj . Consider a clockwise Eulerian visit of the outer face of P that starts at w1 and ends at vj . Suppose,
for a contradiction, that during this visit a vertex is encountered more than once. This implies the existence
of two parallel edges ea and eb with a, b ∈ {1, . . . , j} and with va = vb, which contradicts the minimality of j,
either directly (if ea and eb define a multilens) or by Condition WF4 (otherwise). Observe that no vertex vi
with 2 ≤ i ≤ j is incident to the outer face of G, by hypothesis. Thus, the union of the path P ∪ ej+1 and of
the path Co − e1 is a cycle C−

o , which bounds the outer face of G−.
We next prove that G− is well-formed.

– Condition WF1 follows from the fact that the left path of G−, as well as the left path of G, is the edge
(s, t), given that j < m and that em is the left path of G−.

– Condition WF2 follows from the fact that G satisfies Condition WF2 and that every internal face of G−

is also an internal face of G, given that the edges e1, e2, . . . , ej all lie outside C−
o .

– Condition WF3 follows from the fact that G satisfies Condition WF3 and that the edge set of G− is a
subset of the edge set of G.

– Finally, we prove Condition WF4. Consider any pair (ep, eq) of parallel edges of G
−, where w.l.o.g. p < q,

such that ℓ(ep, eq) is not a multilens. We prove that ℓ(ep, eq) contains a multilens in its interior in G−.
Since G− is a subgraph of G, we have that the edges ep and eq also belong to G. Since G satisfies Condition
WF4, it contains two edges er and es such that ℓ(er, es) is a multilens and such that ℓ(er, es) ⊂ ℓ(ep, eq),
which implies that p ≤ r ≤ q and p ≤ s ≤ q. Since ep belongs to G−, it follows that p > j. This implies

10

that r > j and that s > j, hence er and es also belong to G− and thus ℓ(ep, eq) contains a multilens in
its interior in G−.

This concludes the proof that G− is well-formed, and the proof of the lemma. □

Inner-canonical orientations of G∗ and G− can be used to construct inner-canonical orientations of G, as
in the following two lemmata.

Lemma 4. Let D∗ be an inner-canonical orientation of G∗. The orientation D of G that is obtained from
D∗ by orienting the edge (s, w1) away from s and by keeping the orientation of all other edges unchanged is
inner-canonical.

Proof: In view of Observation 1, in order to prove that D is an st-orientation, it suffices to show that all
its faces are ♢-faces. First observe that every face of G, except for the internal face f incident to (s, w1) and
for the outer face, is also a face of G∗ and that its incident edges are oriented in the same way in D and
D∗. Hence each such a face is a ♢-face. The face f is bounded in G by the edges (s, x1) and (s, w1), which
are both outgoing s in D, and by the edge (w1, x1), which is outgoing w1 in D. Therefore f is a ♢-face with
source s and sink x1. The outer face of G is bounded by the edge (s, t) and the directed path s, w1, w2, . . . , t,
which are both outgoing s in D. Therefore the outer face is a ♢-face with source s and sink t. Thus D is a
plane st-graph. Each internal vertex w of G is also an internal vertex of G∗, and thus it has two incoming
edges in D since the same property is true in D∗. □

Lemma 5. Let D− be an inner-canonical orientation of G−. The orientation D of G that is obtained from D−

by orienting the edges e1, e2, . . . , ej away from s and by keeping the orientation of all other edges unchanged
is inner-canonical.

Proof: Clearly, D is an st-orientation, given that D− is an st-orientation and that all the edges e1, e2, . . . , ej
are oriented away from the single source s of D−. Every internal vertex w of G is either an internal vertex of
G−, and thus it has two incoming edges in D since the same property is true in D−, or is an end-vertex of an
edge ei, for some i ∈ {2, . . . , j}. In the latter case, w has at least two incoming edges in D, namely ei and at
least one incoming edge it also has in D−. □

A crucial consequence of Lemmata 2 to 5 is the following.

Lemma 6. Every well-formed biconnected plane graph G with poles s and t has at least one inner-canonical
orientation.

Proof: The proof is by induction on the number of edges of G. In the base case, G is a single edge between
s and t. Then the orientation of such an edge from s to t trivially is inner-canonical. For the inductive case,
we distinguish two cases.

There exist no parallel edges between s and w1; refer to Fig. 4. By Lemma 2, the plane graph G∗

obtained by the contraction of e1 = (s, w1) in G is biconnected and well-formed (with poles s and t). Thus,
by induction, it admits an inner-canonical orientation D∗. By Lemma 4, orienting the edge e1 away from s
and keeping the orientation of all other edges unchanged turns D∗ into an inner-canonical orientation D of G.

There exist parallel edges between s and w1; refer to Fig. 5a. In order to prove that G admits an
inner-canonical orientation, it suffices to prove that the index j, defined in Lemma 3 as the smallest index
such that ej and ej+1 define a multilens, exists. Indeed, if such an index exists, we have that, by Lemma 3, the
plane graph G− obtained from G by removing the edges e1, e2, . . . , ej is well-formed and thus, by induction,
it admits an inner-canonical orientation D−. Also, by Lemma 5, orienting the edges e1, e2, . . . , ej away from
s turns D− into an inner-canonical orientation D of G, which proves the statement.

We now show that j exists. By hypothesis, there exist two parallel edges between s and w1. Since e1
connects s and w1, it follows that e1 is one of such edges. Let eh be a distinct edge also connecting s and w1.
By Condition WF4, there exist two edges ep and ep+1 that define a multilens and such that 1 ≤ p < p+1 ≤ h.
We show that choosing j as the smallest index p such that ep and ep+1 define a multilens allows Lemma 3 to

11

be applied. If j = 1, then Lemma 3 trivially applies. If j > 1, consider any edge ei such that 1 < i ≤ j. We
argue that vi is not incident to the outer face of G, which allows Lemma 3 to be applied. Suppose the contrary,
for a contradiction. We have vi ̸= w1, as otherwise e1 and ei would be parallel edges, and thus, by Condition
WF4, there would exist two edges ep and ep+1 that define a multilens and such that 1 ≤ p < p + 1 ≤ i,
contradicting the minimality of j. Since vi ̸= w1, we have that vi lies in the exterior of ℓ(e1, eh). From this
and from the fact that ei appears between eh and e1 in left-to-right order around s, we have that ei crosses
the cycle composed of e1 and eh, contradicting the planarity of G. □

Sections 3.1 and 3.2 are devoted to the proof of the following main result.

Theorem 2. Let G be a well-formed biconnected plane graph with φ edges. There exists an algorithm with
O(φ) setup time and O(φ) space usage that lists all the inner-canonical orientations of G with O(φ) delay.

Provided that Theorem 2 holds, we can prove the following.

Lemma 7. Let G be an n-vertex maximal plane graph and let (u, v, z) be the cycle delimiting its outer face,
where u, v, and z appear in this counter-clockwise order along the outer face of G. There exists an algorithm
with O(n) setup time and O(n) space usage that lists all the canonical orientations of G with first vertex u
with O(n) delay.

Proof: Since G is a biconnected, in fact triconnected, well-formed plane graph with poles u and z, it
suffices to prove that any inner-canonical orientation of G is also a canonical orientation of G with first vertex
u, and vice versa. Namely, this and the fact that G has O(n) edges imply that the algorithm in Theorem 2
enumerates all canonical orientations of G within the stated bounds.

By Theorem 1, any canonical orientation of G with first vertex u is a uz-orientation such that every
internal vertex has at least two incoming edges, hence it is an inner-canonical orientation of G. Conversely,
any inner-canonical orientation D of G is also canonical. Indeed, by definition D is a uz-orientation such
that every internal vertex has at least two incoming edges. By Theorem 1, we have that D is a canonical
orientation with first vertex u. □

Theorem 3. Let G be an n-vertex maximal plane (resp. planar) graph. There exists an algorithm A1 (resp.
A2) with O(n) setup time and O(n) space usage that lists all canonical orientations of G with O(n) delay.

Proof: The algorithm A1 uses the one for the proof of Lemma 7 three times, namely once for each
choice of the first vertex among the three vertices incident to the outer face of G. The algorithm A2 uses
the algorithm A1 applied 4n − 8 times; this is because there are 4n − 8 maximal plane graphs that are
isomorphic to G. Namely, the cycle (u, v, z) delimiting the outer face of a maximal plane graph isomorphic to
G can be chosen among the 2n− 4 facial cycles (of any planar drawing) of G, and the vertices can appear in
counter-clockwise order u, v, z or u, z, v along the boundary of the outer face. Note that any two orientations
produced by different applications of algorithm A2 differ on the source of the orientation, or on the sink of
the orientation, or on the non-source and non-sink vertex incident to the outer face. □

3.1 The Inner-Canonical Enumerator Algorithm

We are now ready to describe an algorithm that takes in input a well-formed biconnected plane graph G with
poles s and t, and enumerates all its inner-canonical orientations (confr. Theorem 2). The algorithm, which
we call Inner-Canonical Enumerator (ICE, for short), works recursively; refer to Fig. 6. In the base
case, G is the single edge em = (s, t), and its unique inner-canonical orientation is the one in which the edge
em is directed from s to t. Otherwise, the algorithm distinguishes four cases. In Cases 1 and 2, G contains
parallel edges and e1 is the unique edge between s and w1. Let j ∈ {2, . . . ,m− 1} be the smallest index such
that ej and ej+1 define a multilens of G; note that j > 1 by the above assumption. In Case 1, there exists an
index i ∈ {2, . . . , j} such that vi is incident to the outer face of G, while in Case 2 such an index does not
exist. In Case 3, G does not contain parallel edges. Finally, in Case 4, G contains parallel edges between s
and w1. Note that exactly one of Cases 1–4 applies to G.

12

s

t

v1=w1

v2
v3 x

y

s

t

v2
v3 x

y s

v1=w1

v1=w1

t

v1=w1

x

v1=w1

v2

s

t

v3
x

y
v2

x

v2
y

v2v3

s

v3

s

t

x
y

v3

y

s

t

x

y
x

s

t

x
t

s

t

y
t

s

t

v3

t

t

v3

yv2
y

v2
v3

s

s

v3

v3

y

s

t

y
t

s

t

v3

t

s

t

t

y
s

y
t

y
v3

t

v3

s
v2

v3 t

v3
s

s
v3

s

t

v3
t

s

t

v2
v3 x

y

s
v2

s

t

v3 x

y

s

t

v3

y
v2 x

x
y

x
t

t

v3

y

st

v3
x

y

s

Case 1: Contract/Decontract

Case 2: Remove/Reinsert

s

t

v1=w1

v2
v3 x

y

s

t

v1=w1

v2
v3 x

y

s

t

v1=w1

v2
v3 x

y

s

t

s

t

Case 2: Contract/Decontract

Case 4: Remove/Reinsert

Case 3: Contract/Decontract

Fig. 6: Illustration of the call tree of an execution of the ICE algorithm. Each of the three inner-canonical
orientations of the graph in the root node is shown below the corresponding leaf node.

13

– In Cases 1 and 3, we contract the edge (s, w1). Let G
∗ be the resulting plane graph and note that, by

Lemma 2, G∗ is biconnected and well-formed. Thus, the ICE algorithm can be applied recursively in
order to enumerate all the inner-canonical orientations of G∗. The ICE algorithm then obtains all the
inner-canonical orientations of G as follows: For every inner-canonical orientation D∗ of G∗, the algorithm
constructs one inner-canonical orientation of G by orienting the edge (s, w1) away from s and by keeping
the orientation of all other edges unchanged, where some edges that are incident to s in G∗ are instead
incident to w1 in G; these are all outgoing s in D∗ and all outgoing w1 in D.

– In Case 4, we remove the edges e1, e2, . . . , ej . Let G
′ be the resulting plane graph and note that, by

Lemma 3, G′ is biconnected and well-formed. Thus, the ICE algorithm can be applied recursively in
order to enumerate all the inner-canonical orientations of G′. The ICE algorithm then obtains all the
inner-canonical orientations of G as follows: For every inner-canonical orientation D′ of G′, the algorithm
constructs one inner-canonical orientation of G by orienting the edges e1, e2, . . . , ej away from s and by
keeping the orientation of all other edges unchanged.

– In Case 2, the ICE algorithm branches and applies both the contraction and the removal operations.
More formally, first we contract the edge (s, w1), obtaining a well-formed biconnected plane graph G∗, by
Lemma 2. From every inner-canonical orientation D∗ of G∗, the algorithm constructs one inner-canonical
orientation of G, same as in Cases 1 and 3. After all the inner-canonical orientations of G∗ have been
used to produce inner-canonical orientations of G, we remove the edges e1, e2, . . . , ej from G, obtaining a
well-formed biconnected plane graph G′, by Lemma 3. From every inner-canonical orientation D′ of G′,
the algorithm constructs one inner-canonical orientation of G, same as in Case 4.

We remark that the ICE algorithm outputs an inner-canonical orientation every time the base case applies.
The next three lemmata prove the correctness of the algorithm. We will later describe, in Section 3.2, how to
efficiently implement it.

Lemma 8. Every orientation of G listed by the ICE algorithm is inner-canonical.

Proof: The proof is by induction on the size of G. The statement is trivial in the base case, hence suppose
that one of Cases 1–4 applies.

In Cases 1, 2, and 3, by Lemma 2, the graph G∗ constructed by the algorithm is well-formed. Hence, by
induction, every orientation D∗ that is an output of the recursive call to ICE with input G∗ is inner-canonical.
Starting from D∗, the ICE algorithm constructs one orientation D of G by orienting the edge (s, w1) away from
s and by keeping the orientation of all other edges unchanged. By Lemma 4, we have that D is inner-canonical.

In Cases 2 and 4, by Lemma 3, the graph G− constructed by the algorithm is well-formed. Hence, by
induction, every orientation D− that is an output of the recursive call to ICE with input G− is inner-canonical.
Starting from D−, the ICE algorithm constructs one orientation D of G by orienting the edges e1, e2, . . . , ej
away from s and by keeping the orientation of all other edges unchanged. By Lemma 5, we have that D is
inner-canonical.

This completes the induction and hence the proof of the lemma. □

Lemma 9. The ICE algorithm outputs all the inner-canonical orientations of G.

Proof: The proof is by induction on the size of G. The statement is trivial in the base case, when G is
the single edge (s, t). Otherwise, suppose that one of Cases 1–4 applies.

Suppose, for a contradiction, that there exists an inner-canonical orientation D of G that is not generated
by the ICE algorithm. We distinguish two cases based on the structure of G and on the orientation of the
edges in D. In Case A, we have that G satisfies Case 1 of the algorithm, or G satisfies Case 3 of the algorithm,
or G satisfies Case 2 of the algorithm and the edge (v1, v2) is outgoing v1 in D; recall that e1, . . . , em is the
counter-clockwise order of the edges incident to s, where e1 is the edge in the right path of G, and that
v1, . . . , vm are the end-vertices of e1, . . . , em different from s, respectively. In Case B, we have that G satisfies
Case 4 of the algorithm, or G satisfies Case 2 of the algorithm and the edge (v1, v2) is outgoing v2 in D. In
Case A, consider the orientation D∗ of G∗ resulting from the contraction of e1 in D. We prove below that D∗

is inner-canonical. Then, by induction, it is generated by the algorithm. Therefore, since by expanding the

14

edge e1 (as in Cases 1, 2, and 3 of the algorithm) we obtain D, we get a contradiction. Analogously, in Case
B, consider the orientation D− of G− resulting from the removal of the edges e1, e2, . . . , ej in D, where j is
the smallest index such that ej and ej+1 define a multilens of G. We prove below that D− is inner-canonical.
Then, by induction, it is generated by the algorithm. Therefore, since by reinserting the edges e1, e2, . . . ej (as
in Cases 2 and 4 of the algorithm) we obtain D, we get a contradiction. It remains to prove that D∗ in Case
A and D− in Case B are inner-canonical orientations.

The orientation D∗ is inner-canonical in Case A. First, every internal vertex of G∗ has the same
incident edges in D and in D∗ (up to renaming the end-vertex of some of these edges from v1 to s), hence
every internal vertex has at least two incoming edges in D∗ since the same is true in D. Second, we show that
D∗ is an st-orientation of G∗. In the following, we first assume that the edge (v1, v2) is outgoing v1 in D and
show that D∗ is an st-orientation of G∗ under this assumption. We will then show that the edge (v1, v2) is
indeed outgoing v1 in D.

In view of Observation 1, in order to prove that D∗ is an st-orientation, it suffices to show that all its
faces are ♢-faces. Let f be the internal face of G incident to e1. Since we are not in Case 4 of the algorithm,
we have that f is a triangular face delimited by the cycle (s, v1, v2). Observe that every face of G∗, except for
f and for the outer face, is also a face of G and that its incident edges are oriented in the same way in D∗

and D. Hence, each such a face is a ♢-face of D∗. The face f is bounded in G∗ by two parallel edges between
s and v2: One of them is e2 and the other one is the edge (v1, v2) after the contraction that identifies v1 and
s. Both these edges are outgoing s in D∗, since e2 is outgoing s in D and since (v1, v2) is outgoing v1 in D,
by hypothesis. Therefore, f is a ♢-face in D∗ with source s and sink v2. The outer face is bounded in G∗ by
the edge (s, t) and the directed path s, w2, . . . , t, which are both outgoing s in D∗. Thus, the outer face of D∗

is a ♢-face with source s and sink t. This concludes the proof that D∗ is an st-orientation.

It remains to prove that the edge (v1, v2) is outgoing v1 in D. If G satisfies Case 2 of the algorithm, then
the statement trivially holds true by the hypotheses of Case A. In Cases 1 and 3, let k be the smallest index
such that vk is a neighbor of s incident to the outer face; such an index exists as vm = t is incident to the
outer face of G. Since in Case 3 there are no parallel edges in G and in Case 1 there are no two edges eh and
eh+1 defining a multilens, for any h ∈ {1, . . . , k}, we have that the internal faces of G delimited by ei and
ei+1, for i = 1, . . . , k − 1, are triangular. Consider the plane subgraph P of G formed by the edges of such
triangular faces that are not incident to s. Such a graph is a path between v1 and vk (confr. with the proof of
Lemma 3). Suppose, for a contradiction, that the edge (v1, v2) is outgoing v2 in D. Consider the maximal
directed subpath vx, vx−1, . . . , v1 of P such that the edge (vi, vi−1) is outgoing vi, for i = x, . . . , 2. If x = k,
we have that D contains a directed cycle formed by the path P and the subpath of pr between v1 and vk,
which contradicts the fact that D is an st-orientation. If x < k, consider the edges (vx, vx−1) and (vx, vx+1),
that are both outgoing vx in D. First, (s, vx) is incoming vx in D and it is the only edge incident to vx that
follows (vx, vx+1) and precedes (vx, vx−1) in counter-clockwise order around vx. Second, by Observation 2, all
the edges of G incident to vx that follow (vx, vx−1) and precede (vx, vx+1) in counter-clockwise order around
vx are outgoing vx. Hence, vx has only one incoming edge. Since vx is an internal vertex of G, we have a
contradiction to the fact that D is inner-canonical. This concludes the proof that the edge (v1, v2) is outgoing
v1 in D in Case A.

The orientation D− is inner-canonical in Case B. First, all the internal vertices of G− are also
internal vertices of G, and thus they have two incoming edges in D− as they also do in D. It remains to
prove that D− is an st-orientation. With this aim, in view of Observation 1, it suffices to show that all the
faces of D− are ♢-faces. Since each internal face of D− is also an internal face of D, we have that it is a
♢-face. We now show that the outer face of D− is a ♢-face. The left path of the outer face of G− coincides
with the edge (s, t), hence it is a directed path from s to t. We now need to prove that the right path p−r
of G− is also a directed path from s to t in D−. Part of p−r is the subpath of pr between v1 and t; this is a
directed path from v1 to t in D−, since pr is a directed path from s to t in D. If the edges e1 and e2 define
a multilens (which implies that Case 4 applies), then p−r is completed with the edge e2, which is directed
from s to v1 in D−. Otherwise, we have that the internal faces of G delimited by the edges ei and ei+1, for
i = 1, . . . , j − 1, are triangular. Consider the plane subgraph P of G formed by the edges of such triangular
faces that are not incident to s. Such a graph is a path between v1 and vj (confr. with the proof of Lemma 3).

15

In order to prove that p−r is a directed path from s to t in D−, it suffices to prove that that P is oriented
from vj to v1 in D (and thus also in D−). First, we show that P is oriented from vj to v1 in D under the
assumption that the edge (v1, v2) is outgoing v2. Then, we show that such an edge is outgoing v2 in Case B.
Consider the maximal directed subpath vx, . . . , v1 of P such the edge (vi, vi−1) is outgoing vi, for i = x, . . . , 2.
If x = j, we have that such a subpath coincides with P , and thus P is directed from vj to v1 in D, as desired.
Otherwise (i.e., when 1 < x < j), we have that both the edges (vx, vx−1) and (vx, vx+1) are outgoing vx. As
in the discussion for Case A, this implies that vx has only one incoming edge in D, which is not possible
since D is inner-canonical. This concludes the proof that the path P is directed from vj to v1 in D, under the
assumption that the edge (v1, v2) is outgoing v2.

Next, we prove that the edge (v1, v2) is outgoing v2 in Case B. In Case 2, this is true by hypothesis. In
Case 4, G contains parallel edges between s and v1. Let ek be the edge parallel to e1 with the smallest index.
We have that, by the construction of P , the edge (v2, v1) follows e1 and precedes ek in clockwise order around
v1. If v1 = t, then (v2, v1) is outgoing v2 since D is an st-orientation. Otherwise, we have that the edge
(v1 = w1, w2) exists and is outgoing v1. Also, such an edge follows e1 and precedes ek in counter-clockwise
order around v1. Therefore, by Observation 2, all the edges of G incident to v1 that follow e1 and precede ek
in clockwise order around v1 are incoming v1. This concludes the proof that the edge (v1, v2) is outgoing v2
in D in Case B, and the proof of the lemma. □

Lemma 10. The ICE algorithm outputs every inner-canonical orientation of G once.

Proof: The proof is by induction on the size of G. The statement is trivial in the base case, when G is the
single edge (s, t); indeed, in this case no recursion is applied and hence the algorithm outputs the (unique)
inner-canonical orientation of G only once.

Suppose now that G contains more than one edge. Also suppose, for a contradiction, that the algorithm
produces (at least) twice the same inner-canonical orientation D of G. We distinguish three cases.

First, suppose that the algorithm produces D both by a “decontraction” of an inner-canonical orientation
D∗

1 of G∗ and by a decontraction of an inner-canonical orientation D∗
2 of G∗. We show that D∗

1 and D∗
2 are

the same orientation. Indeed, D is obtained (from each of D∗
1 and D∗

2) by orienting the edge (s, w1) away
from s and by keeping the orientation of all other edges unchanged. Hence, if D∗

1 and D∗
2 were different, then

also the orientations of G resulting from the decontractions of D∗
1 and D∗

2 would be different, while they are
both equal to D. Since D∗

1 and D∗
2 are the same orientation, by induction, the algorithm outputs such an

orientation only once, hence the algorithm outputs D only once, as well, a contradiction.

Second, suppose that the algorithm produces D both by a “reinsertion” of directed edges in an inner-
canonical orientation D−

1 of G− and by a reinsertion of directed edges in an inner-canonical orientation
D−

2 of G−. We show that D−
1 and D−

2 are the same orientation. Indeed, D is obtained (from each of D−
1

and D−
2) by orienting the edges e1, e2, . . . , ej away from s and by keeping the orientation of all other edges

unchanged. Hence, if D−
1 and D−

2 were different, then also the orientations of G resulting from the reinsertion
of e1, e2, . . . , ej in D−

1 and D−
2 would be different, while they are both equal to D. Since D−

1 and D−
2 are the

same orientation, by induction, the algorithm outputs such an orientation only once, hence the algorithm
outputs D only once, as well, a contradiction.

Finally, suppose that the algorithm produces D both by a decontraction of an inner-canonical orientation
D∗

1 of G∗ and by a reinsertion of directed edges in an inner-canonical orientation D−
2 of G−. We show that

the edge (v1, v2) of G is oriented differently in the inner-canonical orientation D∗ of G resulting from the
decontraction of D∗

1 and in the inner-canonical orientation D− of G resulting from the reinsertion of directed
edges in D−

2 . This contradicts the fact that D∗ and D− are both equal to D. On the one hand, in D∗
1 , the

vertex v1 is identified with s, hence the edge (v1, v2) is outgoing v1. On the other hand, in D−
2 , the edge

(v1, v2) of G belongs to the right path of the outer face of G−, with s, v2, v1, t in this order along such a path.
Hence, the edge (v1, v2) is outgoing v2. This completes the induction and hence the proof of the lemma. □

Lemmata 8 to 10 complete the proof of correctness of the ICE algorithm.

16

Listing 1: Algorithm InnerCanonicalEnumerator

Global :Vertex S (the pole s of a well-formed graph G)
Edge[] EDGES (the array of the edges of G)

Output :A sequence of inner-canonical orientations of G
case ← DetectCase()

if case = CONTRACT or case = CONTRACT&REMOVE then
Edge e1 ← Contract()

InnerCanonicalEnumerator()

Decontract(e1)

if case = REMOVE or case = CONTRACT&REMOVE then
Edges[] removedEdges ← Remove()

InnerCanonicalEnumerator()

Reinsert(removedEdges)

if case = BASE then
Output()

3.2 Efficient Implementation of the ICE Algorithm

By Lemmata 8 to 10, the ICE algorithm outputs all and only the inner-canonical orientations of G once. In
the following, we show how to efficiently implement the ICE algorithm in order to achieve the stated bounds
(confr. Theorem 2). The pseudocode of the algorithm is given in Listing 1.

In the following, we call left-to-right order around s the linear order of the edges incident to s obtained
by visiting in clockwise order such edges starting from em and ending at e1. Analogously, we call right-to-left
order around s the linear order of the edges incident to s obtained by visiting in counter-clockwise order such
edges starting from e1 and ending at em. This allows us to properly refer to an edge incident to a neighbor vi
of s as to the rightmost (resp. leftmost) edge incident to vi of a specific type (e.g., the leftmost nonloose
parallel edge incident to vi or the rightmost parallel edge incident to vi).
Data structures. We start by describing the data structures exploited by the algorithm. Vertices and edges of
G are modelled by means of the following records (see also Listing 2).

Record of type Vertex: For each vertex x, the following information is stored:
– an integer degG(x);
– whether x is incident to the outer face or not;
– a reference to the rightmost edge between s and x, if any;
– if x = s, we also store the following information:

• a reference to the rightmost edge e1 incident to x;
• a reference to the rightmost chord incident to x, if any;
• a reference to the rightmost parallel edge incident to x, if any; and
• a reference to the rightmost edge belonging to a multilens, if any.

Record of type Edge: For each edge e, the following information is stored:
– a reference to the two end-vertices x and y of e;
– whether e is oriented from x to y, or vice versa (this is initialized arbitrarily);
– whether e is an outer edge or not;
– a reference to the edge incident to x that follows e in counter-clockwise order around x and a reference

to the edge incident to y that follows e in counter-clockwise order around y (this information represents
the rotation system around x and y);

– if e is incident to s, we also store the following information:
• an integer representing the position of e in left-to-right order around s (we assume that the
leftmost edge (s, t) has position 1);

• if e is parallel, a reference to the parallel edge (x, y) that follows e in right-to-left order around s,
if any;

• if e is a chord, a reference to the chord that follows e in right-to-left order around s, if any;

17

Listing 2: Data Structures. Underlined pointers of a record of type Vertex might be different from
NULL only if the vertex is s. Underlined pointers of a record of type Edge might be different from
NULL only if one of the end-vertices of the edge is s.

record {
int degree; integer representing the degree of the vertex
bool is outer; True if the vertex is incident to the outer face, False otherwise
Edge first incident to s; reference to the rightmost edge incident to the current vertex and to s; NULL if
the vertex is s or if the vertex is not adjacent to s

Edge e1; reference to the rightmost edge incident to the vertex and to s
Edge first chord; reference to the rightmost chord incident to s
Edge first parallel; reference to the rightmost parallel edge incident to s
Edge first lens; reference to the rightmost edge of a multilens incident to s

} Vertex;
record {

Vertex x, y; references to the end-vertices of the edge
bool oriented from x to y; True if the edge is oriented from x to y, False otherwise
bool is outer; True if the edge is an outer edge, False otherwise
Edge next around x, next around y; Reference to the edge that follows the current edge in
counter-clockwise order around x (around y) in G.

int ord; integer representing the position of the edge in the left-to-right order around s
Edge next parallel with me; reference to the edge (x, y) that follows the current edge in right-to-left order
around s; not NULL only if the current edge is one of the parallel edges between x and y

Edge next chord; reference to the chord that follows the current edge in the right-to-left order around s;
not NULL only if the current edge is a chord

Edge next nonloose parallel; reference to the nonloose parallel edge that follows the current edge in
right-to-left order around s; not NULL only if the current edge is parallel and nonloose

Edge next nonloose lens; reference to the nonloose edge belonging to a multilens that follows the current
edge in right-to-left order around s; not NULL only if the current edge belongs to a multilens

} Edge;

• if e is parallel and nonloose, a reference to the parallel nonloose edge that follows e in right-to-left
order around s, if any; and

• if e belongs to a multilens, a reference to the nonloose edge belonging to a multilens that follows
e in right-to-left order around s, if any.

The algorithm exploits the following (global) data structures:

– The input well-formed biconnected plane graph G = (V,E) with poles s and t is represented using records
of type Vertex for the vertices in V and records of type Edge for the edges in E. In particular, we
maintain the reference to a record S of type Vertex corresponding to the vertex s.

– In order to efficiently output the orientation of all the edges of an inner-canonical orientation, we use an
array EDGES whose elements are records of type Edge whose i-th entry contains a reference to the
edge with id equal to i.

Procedures. The algorithm builds upon the procedures described below. In the remainder, we denote the
type-Vertex record for a vertex x by ν(x) and the type-Edge record for an edge e by ε(e). Clearly, S = ν(s).

Detect Case. This procedure allows us to efficiently determine which of the cases of the ICE algorithm
applies to G; refer to the pseudocode of Listing 3. We perform checks in the following order, assuming that
previous checks have not concluded which case of the ICE algorithm we are in.

– We access e1 via S and check if the reference in ε(e1) to the edge incident to s that follows e1 in
counter-clockwise order around s is NULL. In the positive case, we are in the Base Case.

18

Listing 3: Procedure DetectCase

Global :Vertex S; the pole s of a well-formed graph G
Edge[] EDGES; the array of the edges of G

Output :A label in {BASE, CONTRACT, REMOVE, CONTRACT&REMOVE} encoding the case of the ICE algorithm
that applies to G

e1 ← S.e1 The edge e1 of G; for simplicity of description, assume e1.x is S.
if e1.next around x is NULL then

return BASE; Base Case

if S.first parallel is NULL then
return CONTRACT; Case 3

if e1.next parallel with me is not NULL then
return REMOVE; Case 4

if S.first chord.ord ≥ S.first lens.ord then
return CONTRACT; Case 1

else
return CONTRACT&REMOVE; Case 2

– We check if the reference in S to the rightmost parallel edge incident to s is NULL. In the positive case,
we are in Case 3.

– We access e1 via S and check if the reference in ε(e1) to the parallel edge with the same end-vertices as
e1 that follows e1 in right-to-left order around s is NULL. In the negative case, we are in Case 4.

– Finally, we access via S the type-Edge record ε(c) referenced by S for the rightmost chord c incident to
s and the type-Edge record ε(r) referenced by S for the rightmost edge r belonging to a multilens. If
ε(c) is NULL, or if the integer in ε(c) representing the position of c in the left-to-right order around s is
smaller than the integer in ε(r) representing the position of r in the left-to-right order around s, we are
in Case 2, otherwise we are in Case 1.

Clearly, we can perform all these checks in O(1) time.

Output. This procedure allows us to efficiently output an inner-canonical orientation of G. With this aim, it
suffices to scan the array EDGES, printing for each edge its orientation. Clearly, this takes O(φ) time.

Contract. This procedure allows us to efficiently perform the contraction of the edge e1 in G in order to
construct the graph G∗ and to update the data structures in such a way as to support the recursive calls of
the ICE algorithm; refer also to the pseudocode description of Listing 4 and to Fig. 7. The procedure works
as follows.

First, we access the reference to the rightmost edge e1 incident to s via S and set the Boolean value in ε(e1)
representing the orientation of such an edge to True if the end-vertex x of e1 is s and to False otherwise. Also,
we set the integer value of S representing the degree degG∗(s) of s in G∗ to degG(s) + degG(w1)− 2. Indeed,
the degree of the vertex resulting from the contraction of e1 is the sum of the degrees of the end-vertices s
and w1 of e1, minus two, as e1 is incident to both s and w1 in G and is not part of G∗. Second, the reference
to the rightmost edge incident to s is set to point to the successor (w1, w2) of e1 in the counter-clockwise
order of the edges incident to w1. Third, we store for future use a reference to the rightmost parallel edge
rp incident to s in G and a reference to the rightmost chord rc incident to s in G; this information can be
accessed via S.

Next, we perform a visit of the edges incident to w1 in the counter-clockwise order in which they appear
around w1 in G starting at (w1, w2). Throughout the visit, we keep track of the lastly visited edge lc incident
to w1 that becomes a chord in G∗ and of the lastly visited edge lp incident to w1 that results in a nonloose
parallel edge in G∗. We execute the following actions for each encountered edge e.

Current edge’s updates: We set the reference to the end-vertex of e corresponding to w1 to point to S
and the integer in ε(e) representing the position of e in left-to-right order around s to be degG∗(s)− i+1,
if e is the i-th edge considered in the visit.

19

G

t

e1

e†

G∗

t

e1←e†

next nonloose lens next nonloose parallel next chord next parallel with me
first lens first parallel first chord

w1

w3

w4

w5

w2

w3

w4

w5

w2

ss

v2

v2
v3

v3

h

v4

v5

v6

v7

v8
v4

v5

v6

v7

v8

b
b h

rc

rp

Fig. 7: Illustration for the Contract procedure. The input graph G is on the left, whereas the graph G∗

resulting from the contraction of e1 in G is on the right. Empty and filled circles represent vertices adjacent
and not adjacent to s, respectively. The neighbors of w1 that are not incident to S in G are red. The arrowed
curves illustrate the references from type-Edge records to type-Edge records that correspond to the edges
incident to s (solid or dashed) as well as the references from the type-Vertex record S to type-Edge records
that correspond to the edges incident to s (dashed-dotted). To reduce clutter, the references next around x

and next around y (see Listing 2) used to encode the counter-clockwise order of the edges incident to s are
omitted. The references on the right that are not present on the left are dashed and thick. Loose edges are
solid and thick.

Handling new chords: We test whether the end-vertex u of e different from w1 (in fact, different from s,
after the previous update) is incident to the outer face (this information is stored in ν(u)). If that is the
case and if e ̸= (w1, w2), we have encountered a chord of G∗. If this is the first encountered edge incident
to w1 that is a chord in G∗, then it is also the rightmost chord of G∗, hence we set the reference in S
to the rightmost chord incident to s to point to ε(e). Otherwise, we have already encountered an edge
incident to w1 that is a chord in G∗, and the last encountered edge of this type is stored in lc, hence we
set the reference in ε(lc) to the chord that follows lc in the right-to-left order around s to ε(e). In either
case, we update lc to e.

Handling new lenses: We test whether the edge that follows e in the counter-clockwise order of the edges
incident to w1 in G is e1. If this is the case, then the edge e is the edge (v2, w1), labeled h in Fig. 7, and
becomes the rightmost edge of a multilens of G∗ composed of parallel edges between s and v2. Therefore,
we update the reference in S to the rightmost nonloose edge of a multilens incident to s to ε(e). Notice
that e is the only nonloose edge that is involved in a multilens in G∗ and not in G. Also, if the reference
in S to the rightmost nonloose edge of a multilens incident to s used to point to an edge rℓ, then we
update the reference in ε(e) to the nonloose edge belonging to a multilens that follows e in right-to-left
order around s to point to ε(rℓ).

Handling new parallel edges: We test if the end-vertex x of e different from w1 is already adjacent to
s, i.e., if x is one of the vertices v2, . . . , vm; this information is stored in ν(x) as the reference to the
rightmost edge ej between x and s, for some j ∈ {2, . . . ,m}. If this is the case, then edges between s and
x exist in G, thus the contraction of e1 turns e into an edge parallel to such edges; also, e is a nonloose

20

edge, as it is to the right of the edges that already exist between s and x in G. We set the reference in
ε(e) to the edge parallel to e that follows e in right-to-left order around s to point to ε(ej). If e is the
first encountered edge incident to w1 that is a parallel edge in G∗, then it is also the rightmost parallel
edge of G∗, hence we set the reference in S to the rightmost parallel edge incident to s to point to ε(e).
Otherwise, we have already encountered an edge incident to w1 that is a nonloose parallel edge in G∗, and
the last encountered edge of this type is stored in lp, hence we set the reference in ε(lp) to the nonloose
parallel edge that follows lp in right-to-left order around s to ε(e). In either case, we update lp to e.

Both if edges between s and x exist in G and if they do not, the edge e is the rightmost edge incident to s
and x in G∗, hence we set the reference in ν(x) to the rightmost edge incident to x and s to point to ε(e).

Finally, when all the edges incident to w1 have been visited, three more actions are performed.

First, suppose that new chords have been introduced by the contraction of e1. Recall that lc is the leftmost
among such chords. We update the reference in ε(lc) to the next chord in right-to-left order around s to point
to ε(rc), which is the type-Edge record corresponding to the rightmost chord incident to s in G. This was
stored before visiting the edges incident to w1. In this way, we link together all the chords incident to s.

Second, suppose that new nonloose parallel edges have been introduced by the contraction of e1. Recall
that lp is the leftmost among such edges. We update the reference in ε(lp) to the next nonloose parallel edge
in right-to-left order around s to point to ε(rp), which is the type-Edge record corresponding to rightmost
parallel edge incident to s in G. This was stored before visiting the edges incident to w1. In this way, we link
together all non-loose parallel edges incident to s.

Third, let h be the predecessor of e1 in counter-clockwise order around w1 in G and let b be the successor
of e1 in G in counter-clockwise order around s; refer to Fig. 7. We set the reference in ε(h) to the edge
incident to s that follows h in counter-clockwise order around s in G∗ to point to ε(b). In this way, we restore
the rotation system around s. This concludes the description of the Contract procedure. Since we visit all
the edges incident to w1 once and perform for each of them only checks and updates that take O(1) time, the
overall procedure runs in O(degG(w1)) time.

Decontract. This procedure allows us to efficiently perform the “decontraction” of the edge e1 in G∗, in
order to obtain the graph G and the record S back. The corresponding data structures need to be updated
accordingly. We omit the description of the steps of such procedure, as they can be easily deduced from the
ones of the Contract procedure. In particular, the edges incident to s in G∗ that are incident to w1 in
G consist of the rightmost edge belonging to a multilens of G∗ (whose reference is stored in S) and of all
the edges that precede such an edge in the right-to-left order around s. Analogously as for the Contract
procedure, the Decontract procedure can be implemented to run in O(degG(w1)) time. A pseudocode
description of the procedure is provided in Listing 5.

Remove. This procedure allows us to efficiently perform the removal of the edges e1, . . . , ej (as defined in
Lemma 3) in G in order to construct the graph G− and to update the data structures in such a way as to
support the recursive calls of the ICE algorithm; refer to the pseudocode description of Listing 6 and to
Fig. 8. The procedure works as described next and returns an array REMOVED, whose entry with index i points
to the type-Edge record ε(ei+1) of the removed edge ei+1, for i = 0, . . . , j − 1.

First, pointers to the type-Edge records corresponding to ej and ej+1 are retrieved. The first one is indeed
stored in the record S as the reference to the rightmost edge belonging to a multilens. The second one is
instead stored in the record ε(ej) as the reference to the edge incident to s that follows ej in counter-clockwise
order around s. Second, the following updates are performed on S.

(i) The degree of s is updated in S to be the integer stored in ε(ej+1) representing the position of ej+1 in
the left-to-right order around s.

(ii) The reference in S to the rightmost edge belonging to a multilens is updated to the reference stored in
ε(ej) to the nonloose edge belonging to a multilens that follows ej in counter-clockwise order around
s. Observe that, if multilenses exist in G−, then such an edge is ej+1 if ej belongs to a multilens
consisting of more than two parallel edges (see Fig. 8a), whereas it is different from ej+1 if ej belongs
to a multilens consisting of two parallel edges (see Fig. 8b).

21

Listing 4: Procedure Contract

Global :Vertex S; The pole s of a well-formed graph G.
Edge[] EDGES; The array of the edges of G.

Output :A reference to the edge e1 of G.
Side Effects : Sets the orientation of e1 and contracts e1 in G.

e1 ← S.e1; The edge e1 of G.
Orient e1:
if e1.x is S then

e1.oriented from x to y ← True;

else
e1.oriented from x to y ← False;

In what follows, for simplicity, assume e1.x = s and e1.y = w1.
S.e1 ← e1.next around y; Update S’s e1 to be (w1, w2).
S.degree ← S.degree + e1.y.degree − 2; Update S’s degree.
Counter-clockwise visit of the edges incident to w1:
lc, lp ← NULL; rp ← S.first parallel; rc ← S.first chord; Auxiliary references used in the visit.
e← S.e1;
for i← 1; i < e1.y.degree; i← i+ 1 do

Current edge e udpates (in what follows, for simplicity, assume e.y = w1):
e.y ← S ; Identify s and w1.
e.ord ← S.degree − i+ 1
Handling new chords:

if e.x.is outer is True and e.isOuter is False then
if lc is NULL then

S.first chord ← e; Update S.first chord.

else
lc.next chord ← e;

lc ← e;

Handling new lenses:

if e.next around y is e1 then
rℓ ← S.first lens;
S.first lens ← e;
e.next nonloose lens ← rℓ;

Handling new parallel edges:

if e.x.first incident to s is not NULL then
e.next parallel with me ← e.x.first incident to s;
if lp is NULL then

S.first parallel ← e; Update S.first parallel.

else
lp.next nonloose parallel ← e;

lp ← e;

e.x.first incident to s ← e;
if i < e1.y.degree− 1 then

e← e.next around y; The next edge to consider in the visit.

At this point, e is the predecessor h of e1 in counter-clockwise order around w1 in G.
if lc is not NULL then

lc.next chord ← rc;

if lp is not NULL then
lp.next nonloose parallel ← rp;

e.next around y ← e1.next around x;
return e1;

22

Listing 5: Procedure Decontract

Global :Vertex S; The pole s of a well-formed graph G.
Edge[] EDGES; The array of the edges of G.

Input :An edge e1
Side Effects : Sets the orientation of e1 to NULL and decontracts e1 in G∗ in order to obtain G

e1.oriented from x to y ← NULL;
S.first lens, that is h, is not part of a multilens in G.
h← S.first lens;
b← h.next parallel with me;
leftmost chord, leftmost parallel;
Visit the edges incident to s in G∗ that are not incident to s in G.
e← S.e1;
while e ̸= b do

We assume, for simplicity, e.x = s, e1.x = s, and e1.y = w1.
e.x← e1.y;
e.y.first incident to s ← e.next parallel with me; e is not incident to s in G, edges parallel to e in G∗ are.
Find the leftmost chord and the leftmost parallel edge that are not incident to s in G.
if e.is outer is False and e.y.is outer is True then

leftmost chord ← e;

if e.next parallel with me is not NULL then
leftmost parallel ← e;

Current edge e is not incident to s in G.
e.ord ← NULL;
e.next chord ← NULL;
e.next parallel with me ← NULL;
e.next nonloose parallel ← NULL;
e.next nonloose lens ← NULL;
S.degree ← S.degree−1;
e← e.next around x;

h.next around x ← e1;
S.first lens ← h.next nonloose lens;
S.first chord ← leftmost chord.next chord;
S.first parallel ← leftmost parallel.next nonloose parallel;
S.e1 ← e1;

(iii) The reference in S to the rightmost parallel edge incident to s is updated to the reference stored in
ε(ej) to the nonloose parallel edge that follows ej in counter-clockwise order around s. If parallel edges
exist in G−, then an analogous observation to the one given for (ii) holds also in this case; refer again
to Figs. 8a and 8b.

(iv) The reference in S to the rightmost edge incident to s is updated to point to ε(ej+1).

Third, we perform a counter-clockwise visit of the edges incident to s to be removed, starting from e1
and ending at ej (both extremes are considered in the visit), and execute the following actions for each
encountered edge ei. Let x and y be the end-vertices of ei, where x = s. For future use, we store the reference
rc to the rightmost chord incident to s in G, if any.

Current edge’s updates: We set the Boolean value in ε(ei) representing the orientation of such an edge to
True (i.e., ei is oriented from x = s to y = vi), the Boolean value in ν(vi) representing the fact that this
vertex is incident to the outer face of G− to True, and the integer value in ν(vi) representing the degree
degG−(vi) of vi in G− to degG(vi)− 1. Furthermore, we add ei to the array REMOVED in the position with
index i− 1.

Updating new outer edges and outer vertices: For h = 1, . . . , j−1, denote by eh,h+1 the edge (vh, vh+1)
and by e0,1 the edge (v1 = w1, w2) of G. We consider two cases based on whether i ̸= j or i = j.

23

G

t

e1

e

w1

w3

w5

w2

ss

v2

v3

ej

v4

v5

v6

v7

v8

w4
G−

t

e

w1

w3

w5

w2

v4

v5

v6

v7

v8

w4

e1←ej+1

v2

v3

(a) ej belongs to a multilens consisting of more than two parallel edges.

G

t

e1

e

w1

w3

w5

w2

ss

v2

v3

ej

v4

v5

v6

v7

v8

w4
G−

t

e

w1

w3

w5

w2

v4

v5

v6

v7

v8

w4

e1←ej+1

v2

v3

(b) ej belongs to a multiles consisting of two parallel edges.

Fig. 8: Illustrations for the Remove procedure. The input graph G is on the left, whereas the graph G−

resulting from the removal of e1, . . . , ej in G is on the right. The meaning of arrowed curves, of the thickness
of the edges, and of the shape of the vertices is as in Fig. 7. The vertices v1 = w1 and v3 that are neighbors
of s in G but not in G− are orange.

24

If i ̸= j, then ei, ei+1, and ei,i+1 bound a triangular face of G, and (vi, vi+1) is an internal edge of G.
The edges ei and ei+1 do not belong to G−, while the edge ei,i+1 does and is an outer edge of G−. We,
therefore, set the Boolean value in ε(ei,i+1) that represents the fact that ei,i+1 is incident to the outer
face of G− to True. Also, we set the reference in ε(ei,i+1) to the edge that follows it in counter-clockwise
order around vi to point to ε(ei−1,i). Note that ε(ei+1) and ε(ei−1,i) can be accessed via ε(ei) as the
record of the edge that follows ei in counter-clockwise order around s and around vi, respectively, and
ε(ei,i+1) can be accessed via ε(ei+1) as the record of the edge that follows ei+1 in counter-clockwise order
around vi+1.

If i = j, then ej and ej+1 bound an internal face of G, and in particular the edge ej+1 is an internal
edge of G. The edge ej does not belong to G−, while the edge ej+1 does and is an outer edge of G−. We,
therefore, set the Boolean value in ε(ej+1) that represents the fact that ej+1 is incident to the outer face
of G− to True. Also, we set the reference in ε(ej+1) to the edge that follows it in counter-clockwise order
around vi to point to ε(ej−1,j). Note that ε(ej+1) can be accessed via ε(ei) as above, and ε(ej−1,j) can
be accessed via ε(ej) as the record of the edge that follows ej in counter-clockwise order around vj .

Updating chords: Note that the applicability of the removal operations requires that there exists no chord
(s, vh) in G with h ≤ j. Therefore, each chord of G is also a chord of G−. However, there may exist chords
in G− that do not belong to G. These chords, if any, are exactly the edges parallel to the removed edges
e1, . . . , ej ; refer to Fig. 8. If neither of e1, . . . , ej−1 has parallel edges and the unique edge parallel to ej is
ej+1, then G− and G have the same chords. To account for the chords in G− that do not belong to G,
we take the steps described below for each visited edge ei.

For any 1 ≤ a < b ≤ j, we detect all the chords of G− stemming from edges parallel to ea before the
chords stemming from eb. All the chords stemming from ea need to be linked together. Also, if ea and eb
each have at least one parallel edge in G and there exists no edge ec with a < c < b such that ec has at
least one parallel edge in G, then the leftmost chord of G− stemming from eb needs to be linked to the
rightmost chord of G− stemming from ea. Moreover, let a′ and b′ be the minimum and maximum indices
of edges in e1, . . . , ej having parallel edges. Then the leftmost chord of G− stemming from ea′ needs to
be linked to the rightmost chord rc of G, whereas the rightmost chord stemming from eb′ needs to be set
at the rightmost chord incident to s.

Below, we provide the details of the actions needed to implement the above updates in the data structures,
when processing an edge ei. Throughout, we maintain the record R of the rightmost encountered chord;
initially, we set R = rc.

– First, we access the reference to the rightmost edge rip of G, if any, different from ei that is parallel
to ei (i.e., this information is stored in ε(ei) as the reference to the edge parallel to ei that follows ei
in right-to-left order around s in G).

– Second, we set the reference in ν(vi) to the rightmost edge incident to vi that is also incident to s to
point to ε(rip). If ε(r

i
p) is NULL, we proceed to consider the next edge ei+1, otherwise we continue to

process ei as below.

– Third, we perform a counter-clockwise visit around s of the list of edges parallel to ei starting from
rip and ending at the leftmost edge lip of such a list. Let α be the currently considered edge in this

visit; initially, α = rip. We set the reference in ε(α) to the chord that follows α in right-to-left order
to point to the record of the edge β parallel to α that follows α in right-to-left order, if any. This
links together all the chords stemming from ei. When all the edges parallel to ei have been visited,
we set the reference in ε(lip) to the chord that follows lip in right-to-left order to point to R, and then

we update R = rip. This links the chords stemming from ei to the chords stemming from e1, . . . , ei−1

and to the chords in G.

When all the edges e1, . . . , ej have been visited, we update the reference in S to the rightmost chord
incident to S to point to R. Note that, if none of e1, . . . , ej−1 has parallel edges and the unique edge
parallel to ej is ej+1, then G− and G have the same chords and R = rc.

As a final step, the procedure returns the array REMOVED.

25

Since we visit all the edges e1, . . . , ej once and all the edges parallel to e2, . . . , ej once, and since we
perform for each of these edges only checks and updates that take O(1) time, the overall procedure runs in

O(j +
∑j

i=2 π(ei)), where π(ei) denotes the number of edges parallel to ei in G.

Reinsert. This procedure allows us to efficiently perform the “reinsertion” of the edges e1, . . . , ej in G−

to reconstruct the graph G, and to accordingly update the data structures. For space reasons, we omit the
description of the steps of such procedure as they can be easily deduced from the ones of the Remove
procedure. Analogously as for the Remove procedure, the Reinsert procedure can be implemented to run
in O(j +

∑j
i=2 π(ei)). A pseudocode description of the procedure is provided in Listing 7.

We are finally ready to prove the bounds stated in Theorem 2.

Setup time: Recall that φ denotes the number of edges of G. Initializing the type-Vertex and the type-Edge
records requires O(φ) time, assuming that: (i) for each vertex of G, a circularly-linked list is provided
encoding the counter-clockwise order of the edges incident to v in the planar embedding of G, and that
(ii) the edge (s, v1) incident to the outer face of G is specified. Indeed, setting the type-Vertex and the
type-Edge records up can be easily accomplished by suitably traversing the above lists. In particular, a
first visit starting from the edge (s, v1) allows us to determine the outer vertices and edges of G, from
which the chords of G can be determined. Parallel edges can be detected easily since they are incident
to s; indeed, while traversing the list of the edges incident to s, one can mark each end-vertex different
from s the first time an edge incident to it is encountered, and also keep track of a reference to that
edge. Edges incident to an already marked vertex and to s are parallel edges and also make the first edge
incident to those two vertices a parallel edge. The array EDGES can clearly be constructed in O(φ) time.

Space usage: At any step, the graph considered by the ICE algorithm has at most φ edges. Thus, the space
used to represent such a structure is O(φ). Also, the number of recursive calls to the ICE algorithm is
O(φ). Therefore, in order to show that the overall space usage of the ICE algorithm is also O(φ), we only
need to account for the amount of information that needs to be stored, at any moment, in the call stack,
i.e., for the size of the activation records of all the calls. The top of the stack either contains the activation
record of a call to the ICE algorithm on the current graph or of a call to the Output, Contract,
Decontract, Remove, or Reinsert auxiliary procedures. The interior of the stack only contains the
activation records of calls to the ICE algorithm. Whereas the activation records for each of the five
auxiliary procedures are of O(1) size, the size of the activation record of a call to the ICE algorithm
is O(1), if the considered call does not invoke the Remove procedure, or is O(j), if the considered call
invokes the Remove procedure in order to remove the edges e1, . . . , ej . In particular, the activation
record of each call to the ICE algorithm contains either a reference to the contracted edge e1, if the
considered call invokes the Contract procedure, or references to the removed edges e1, . . . , ej , if it
invokes the Remove procedure. The key observation here is that a reference to an edge of G may appear
only once over all the activation records that are simultaneously on the stack during the execution of the
ICE algorithm, as a contracted or removed edge is not part of the graph considered in the recursive calls.
Therefore, the overall space usage of the stack is O(φ).

Delay: We show that the time spent by the ICE algorithm to output the first inner-canonical orientation of G
is O(φ), and that the time between any two inner-canonical orientations of G that are consecutively listed
by the ICE algorithm is also O(φ). The recursive calls to the ICE algorithm determine a rooted binary
tree T , which we refer to as the call tree, defined as follows; see Fig. 6. The root ρ of T corresponds to
the first call on the input graph G, each non-root node of T corresponds to the call on a graph obtained
starting from G by applying a sequence of Contract or Remove procedures. Let ν be the parent node
of a node µ of T , and let Gν and Gµ be the graphs associated with ν and µ, respectively. The edge
(ν, µ) either corresponds to a Contract (and the symmetric Decontract) procedure if Gµ = G∗

ν or
corresponds to a Remove (and the symmetric Reinsert) procedure if Gµ = G−

ν .
By Lemma 6, we have that the leaves of T correspond to calls to the ICE algorithm on the single edge
(s, t), which is the base case of the ICE algorithm that results in a call to the Output procedure. We
consider the leaves of T as ordered according to their order of creation in the construction of T . Therefore,
we can refer to the first leaf of T and, given a leaf λ of T , to the leaf of T that follows λ. For each edge
e of T , the cost of e, denoted by c(e), is the time spent to perform the procedure corresponding to e.

26

Listing 6: Procedure Remove

Global :Vertex S; The pole s of a well-formed graph G.
Edge[] EDGES; The array of the edges of G.

Output :A length-j array REMOVED whose entries point to the type-Edge records corresponding to
the edges e1, . . . , ej of G removed as in Lemma 3.

Side Effects : Sets the orientation of e1, . . . , ej and removes these edges from G.

For simplicity of description, assume e.x points to S for any edge e incident to s.
e1 ← S.e1;
ej ← S.first lens;
ej+1 ← ej .next around x;
Updating S:
S.degree ← ej+1.ord; setting the degree of S
S.first lens ← ej .next nonloose lens; setting the pointer to the rightmost edge of a multilens
S.first parallel ← ej .next nonloose parallel; setting the pointer to the rightmost parallel edge
S.e1 ← ej+1; setting the pointer to the rightmost edge incident to s
Right-to-left visit of the edges incident to s to be removed:
e← e1; rc ← S.first chord; R← rc;
while e is not ej+1 do

Setting the orientation of e = (s, vi) and updating the fields of ν(vi).
e.oriented from x to y ← True; Orient e
e.y.isOuter ← True;
e.y.degree ← e.y.degree −1;
REMOVED[e1.ord-e.ord] ← e; Add e to the array of removed edges
if e is not ej then

Updating the incidence list of vi and making (vi, vi+1) an outer edge.
ei,i+1 ← e.next around x.next around y;
ei,i+1.isOuter ← True;
ei,i+1.next around y ← e.next around y; ei−1,i follows ei,i+1 in counterclockwise order around vi

else
Updating the incidence list of vj and making ej+1 an outer edge.
ej+1.isOuter ← True;
ej+1.next around y ← ej .next around y;

Updating chords:

rip ← e.next parallel with me;
e.y.first incident to s ← rip;
if e = ej then

rip ← rip.next parallel with me; ignore ej+1, which is not a chord

if e is not e1 and rip is not NULL then
there are new chords (s, vi)
α← rip;
β ← α.next parallel with me;
while β is not NULL do

α.next chord ← β;
α← β;
β ← α.next parallel with me;

α.next chord ← R;
R← rip;

if e = ej then
S.first chord ← R; Update the first chord

e← e.next around x;

return REMOVED;

27

Listing 7: Procedure Reinsert

Global :Vertex S; The pole s of a well-formed graph G.
Edge[] EDGES; The array of the edges of G.

Input :A length-j array REMOVED whose entries point to the type-Edge records corresponding to the
edges e1, . . . , ej removed as in Lemma 3.

Side Effects :Reinserts the edges e1, . . . , ej in G− to obtain G.

S.e1 ← REMOVED[0]; this is e1
S.first lens ← REMOVED[REMOVED.length-1]; this is ej
new first chord ← S.first chord;
new first parallel ← S.first parallel;
for int i=REMOVED.length; i ≥ 1; i−− do

ei ← REMOVED[i-1];
We assume, for simplicity, ei.x = S, ei.y = vi
if ei is not e1 then

vi.isOuter ← False;

vi.first incident to s ← ei;
vi.degree ← vi.degree+1
if ei is not ej then

Updating the incidence list of vi, and making the edge (vi, vi+1) an internal edge.
We assume, for simplicity, ei,i+1 = (vi, vi+1), ei,i+1.x = vi, and ei,i+1.y = vi+1

ei+1 ← REMOVED[i];
ei,i+1 ← ei+1.next around y;
ei,i+1.next around x ← ei;
ei,i+1.isOuter ← False;

else
Updating the incidence list of vj and making ej+1 an internal edge.
ej+1 ← ej .next around x;
ej+1.next around y ← ej ;
if ej+1.next around x is not NULL then

ej+1.isOuter ← False;

Updating chords:

if ei is not e1 and ei.next parallel with me is not NULL then
All the edges parallel with ei are not chords in G.
e ← ei.next parallel with me;
while e.next parallel with me is not NULL do

Both e.next parallel with me and e.next chord reference the next edge (s, vi).
e.next chord ← NULL;
e← e.next parallel with me;

new first chord ← e.next chord;
e.next chord ← NULL;

Updating first parallel:

if ei.next parallel with me is not NULL then
new first parallel ← ei;

Updating S’s first chord and first parallel
S.first chord ← new first chord;
S.first parallel ← new first parallel;
S.degree ← S.degree+ REMOVED.length

The time spent to output the first inner-canonical orientation of G coincides with the sum of the costs of
all the edges of the root-to-leaf path pα in T that connects ρ and the first leaf α of T , i.e.,

∑
e∈pα

c(e),
plus the time spent by the Output procedure. As the latter is O(φ), we only need to show that the
former is also O(φ). As already shown in the description of the procedures, for any edge e = (ν, µ) of T ,
the cost c(e) is at most k1 · degGν

(w1), if e corresponds to a Contract/Decontract procedure, and is

28

at most k2 · (j +
∑j

i=2 π(ei)), if e corresponds to a Remove/Reinsert procedure that removes/reinsert
the j rightmost edges incident to the source of Gν , for suitable constants k1, k2 > 0. We have that∑

e∈pα
c(e) ≤ max(k1, k2) · 3φ. In fact, each edge of G: (1) may contribute at most twice to the degree

of a vertex w1 that has an incident edge involved in a Contract/Decontract procedure; (2) may
appear at most once as one of the j edges removed/reinserted by a Remove/Reinsert procedure;
an (3) might appear at most once as one of the edges parallel to some edge removed/reinserted by a
Remove/Reinsert procedure. Indeed: (1) an edge e that is incident to w1 in G is incident to s in G∗,
hence e might only be incident to a “new” vertex w1 involved in a second Contract/Decontract
procedure if it is itself the edge to be contracted; after that, the edge is not part of the resulting graph
G∗; (2) an edge that appears as one of the j edges removed from G is not part of the resulting graph G−;
and (3) if an edge e is parallel to some removed edge in e2, . . . , ej , then e is a chord in G−, hence it is
not a parallel edge of a removed edge later, as that would imply that a removed edge is also a chord,
which does not happen in a Remove/Reinsert procedure.
Finally, let λ be a leaf of T , let η be the leaf of T that follows λ, and let ξ be the lowest common ancestor
of λ and η. The time between the output of the inner-canonical orientation of G corresponding to λ and
the output of the inner-canonical orientation of G corresponding to η coincides with the sum of the costs
of all the edges of the path qλ in T between λ and ξ and of the costs of all the edges of the path qη in T
between ξ and η, i.e.,

∑
e∈qλ

c(e) +
∑

e∈qη
c(e), plus the time spent by the Output procedure. As the

latter is O(φ), we only need to show that the former is also O(φ). By the same arguments used above,
we have that

∑
e∈qλ

c(e) +
∑

e∈qη
c(e) ≤ max(k1, k2) · 6φ, which is O(φ).

This concludes the proof of Theorem 2.

4 Enumeration of Canonical Orderings and Canonical Drawings

In this section, we show how the enumeration algorithm for canonical orientations from Section 3 can be used
in order to provide efficient algorithms for the enumeration of canonical orderings and canonical drawings.
We start with the former.

Lemma 11. Let G be an n-vertex maximal plane graph and let (u, v, z) be the cycle delimiting its outer face.
There exists an algorithm with O(n) setup time and O(n) space usage that lists all canonical orderings of G
with first vertex u with O(n) delay.

Proof: The algorithm uses the algorithm in the proof of Lemma 7 for the enumeration of the canonical
orientations of G with first vertex u. Indeed, for every canonical orientation D of G listed by the latter
algorithm, all canonical orderings π of G such that D is the canonical orientation of G with respect to π can
be generated as the topological sortings of D, by Lemma 1. Algorithms exist for listing all such topological
sortings with O(n) setup time, O(n) space usage, and even just O(1) delay, given that G has O(n) edges;
see [46,48].

All generated canonical orderings have u as first vertex since all the canonical orientations produced by
the algorithms in [46,48] have u as first vertex. Furthermore, any two canonical orderings generated from
the same canonical orientation D differ as any two topological sortings listed by the algorithms in [46,48]
are different from one another. Moreover, any two canonical orderings π and π′ generated from different
canonical orientations D and D′, respectively, differ as there exists an edge (w,w′) in G which is oriented
from w to w′ in D and from w′ to w in D′; this implies that w precedes w′ in π and follows w′ in π′. □

Theorem 4. Let G be an n-vertex maximal plane (planar) graph. There exists an algorithm B1 (resp. B2)
with O(n) setup time and O(n) space usage that lists all canonical orderings of G with O(n) delay.

Proof: Algorithm B1 uses the algorithm in the proof of Lemma 11 applied three times, namely once for
each choice of the first vertex among the three vertices incident to the outer face of the given maximal plane
graph. Algorithm B2 uses the algorithm B1 applied 4n− 8 times, since there are 4n− 8 maximal plane graphs

29

u=w1 v=wr

wp

wp+1 wq

(a) The drawing Γk of Gk.

u=w1 v=wr

wp

wp+1 wq

vk+1

(b) The drawing Γk+1 of Gk+1.

Fig. 9: Illustrations for the FPP algorithm.

which are isomorphic to a given maximal planar graph (see the proof of Theorem 3). Note that any two
canonical orderings produced by different applications of algorithm B2 differ on the first, or on the second, or
on the last vertex in the ordering. □

We now turn our attention to the enumeration of the planar straight-line drawings produced by the
algorithm by de Fraysseix, Pach, and Pollack [26], known as canonical drawings. We begin by reviewing
such an algorithm, which in the following is called FPP algorithm. The algorithm takes as input:

– an n-vertex maximal plane graph G, whose outer face is delimited by a cycle (u, v, z), where u, v, and z
appear in this counter-clockwise order along the outer face of G; and

– a canonical ordering π = (v1 = u, v2 = v, v3, . . . , vn = z) of G; recall that Gk denotes the subgraph of G
induced by the first k vertices of π.

The FPP algorithm works in n − 2 steps. At the first step, the FPP algorithm constructs a planar
straight-line drawing Γ3 of G3 so that v1 is placed at (0, 0), v2 at (2, 0), and v3 at (1, 1), and defines the sets
M3(v1) = {v1, v2, v3}, M3(v3) = {v2, v3}, and M3(v2) = {v2}.

For any k = 3, . . . , n− 1, at step k − 1, the FPP algorithm constructs a planar straight-line drawing Γk+1

of Gk+1 by suitably modifying Γk, as follows; refer to Fig. 9. Denote by w1 = u,w2, . . . , wr = v the clockwise
order of the vertices of Gk along its outer face. Assume that, during step k − 2, the algorithm has defined,
for i = 1, . . . , r, a subset Mk(wi) of the vertices of Gk such that Mk(w1) ⊃ Mk(w2) ⊃ . . . ⊃ Mk(wr). Let
wp, wp+1, . . . , wq be the neighbors of vk+1 in Gk, for some 1 ≤ p < q ≤ r. Then Γk+1 is obtained from Γk by
increasing the x-coordinate of each vertex in Mk(wp+1) by one unit, by increasing the x-coordinate of each
vertex in Mk(wq) by one additional unit, and by placing vk+1 at the intersection point of the line through wp

with slope +1 and of the line through wq with slope −1. The key point for the proof of planarity of Γk+1 is
that the vertices w1, . . . , wr define in Γk an x-monotone path whose edges have slope either +1 or −1. The
“shift” of the vertices in Mk(wp+1) makes room for drawing the edge (wp, vk+1) with slope +1, and the shift
of the vertices in Mk(wq) makes room for drawing the edge (wq, vk+1) with slope −1, thus maintaining the
invariant on the shape of the boundary of Γk+1. Step k − 1 is completed by defining the sets:

– Mk+1(wi) = Mk(wi) ∪ {vk+1}, for i = 1, . . . , p;
– Mk+1(vk+1) = Mk(wp+1) ∪ {vk+1}; and
– Mk+1(wi) = Mk(wi), for i = q, . . . , r.

We call canonical drawing with base edge (u, v) the drawing Γn of G constructed by the FPP algorithm.
We now prove the following main ingredient of our enumeration algorithm for canonical drawings.

Theorem 5. Let G be an n-vertex maximal plane graph and let (u, v, z) be the cycle delimiting the outer
face of G, where u, v, and z appear in this counter-clockwise order along the outer face of G. There exists
a bijective function from the canonical orientations of G with first vertex u to the canonical drawings of G
with base edge (u, v). Also, given a canonical orientation of G with first vertex u, the corresponding canonical
drawing of G with base edge (u, v) can be constructed in O(n) time.

30

In the following we prove Theorem 5. We do this outside of a proof environment as the proof contains
some statements which might be of independent interest.

We introduce some definitions. If D is the canonical orientation of G with respect to π, we say that π
extends D and that π defines D, depending on whether π is constructed from D or vice versa. Also, we say
that the canonical drawing Γ of G obtained by applying the FPP algorithm with a canonical ordering π of G
corresponds to π.

The bijective function f that proves the statement of the theorem is defined as follows. Consider any
canonical orientation D of G with first vertex u and let π be a canonical ordering with first vertex u that
extends D. Then the function f maps D to the canonical drawing that corresponds to π. Note that this
canonical drawing has (u, v) as the base edge, since u is the first vertex of D (and hence the first vertex of π)
and since u, v, and z appear in this counter-clockwise order along the boundary of the outer face of G. The
second part of the statement of Theorem 5 then follows from the fact that a canonical ordering that extends
D can be computed in O(n) time as any topological sorting of D [40], and that the FPP algorithm can be
implemented in O(n) time [17].

In order to prove that f is bijective, we prove that it is injective (that is, for any two distinct canonical
orientations D1 and D2 of G with first vertex u, we have that f(D1) and f(D2) are not the same drawing)
and that it is surjective (that is, for any canonical drawing Γ with base edge (u, v), there exists a canonical
orientation D such that f(D) is Γ).

We first prove that f is injective. Let D1 and D2 be any two distinct canonical orientations of G with first
vertex u. For i = 1, 2, let πi be any canonical ordering that extends Di. Since D1 and D2 are distinct, they
differ on the orientation of some edge (a, b) different from (u, v), say that (a, b) is directed towards b in D1

and towards a in D2. This implies that b follows a in π1 and precedes a in π2. Hence, the y-coordinate of b is
larger than the one of a in f(D1) and smaller than the one of a in f(D2), thus f(D1) and f(D2) are not the
same drawing.

We now prove that f is surjective. Consider any canonical drawing Γ of G with base edge (u, v) and let π
be a canonical ordering of G with first vertex u such that the canonical drawing corresponding to π is Γ .
Let D be the canonical orientation of G with respect to π. The existence of the canonical orientation D is
not enough to prove that f is surjective. Indeed, given the canonical orientation D, the function f considers
some canonical ordering τ , possibly different from π, that extends D, hence f(D) is the canonical drawing
corresponding to τ and it is not guaranteed that f(D) = Γ . However, we have the following claim.

Claim 1 Any two canonical orderings π and τ that extend D are such that the canonical drawings of G
corresponding to π and τ are the same drawing.

Claim 1 implies that f is surjective. Indeed, the function f considers some canonical ordering τ , possibly
different from π, that extends D; by Claim 1, the drawing corresponding to τ is the same drawing as the one
corresponding to π, that is, Γ . It remains to prove Claim 1, which we do next. We start by extending the
notions of canonical ordering, orientation, and drawing to biconnected plane graphs that are not necessarily
maximal.

Let H be an m-vertex biconnected plane graph, with m ≥ 3, whose internal faces are delimited by cycles
with 3 vertices, and let u and v be two vertices incident to the outer face of H such that u immediately
precedes v in the counter-clockwise order of the vertices along the boundary of the outer face of H. A
canonical ordering of H with first vertex u is a labeling of the vertices (v1 = u, v2 = v, v3, . . . , vm−1, vm)
such that, for k = 3, . . . ,m, the plane subgraph Hk of H induced by v1, v2, . . . , vk satisfies conditions (CO-1)
and (CO-2) in Section 2 (with Hk and H replacing Gk and G, respectively). Then a canonical orientation
DH of H with first vertex u is obtained from a canonical ordering π of H with first vertex u by orienting
each edge of H so that it is outgoing at the end-vertex that comes first in π. We say that π extends and
defines DH . A canonical drawing Γ of H with base edge (u, v) is a drawing obtained by applying the
FPP algorithm with a canonical ordering π of H. We say that Γ corresponds to π.

We now state the following claim, which is more general than, and hence implies, Claim 1.

Claim 2 Any two canonical orderings π and τ that extend DH are such that the canonical drawings of H
corresponding to π and τ are the same drawing.

31

The proof of Claim 2 is by induction on m. The proof uses Property 3 below, which is proved inductively
together with Claim 2. Let z1, z2, . . . , zr be the clockwise order of the vertices along the outer face of H.
Furthermore, let Mπ

m(z1), M
π
m(z2), . . ., M

π
m(zr) (let Mτ

m(z1), M
τ
m(z2), . . ., M

τ
m(zr)) be the sets that are

associated to the vertices z1, z2, . . . , zr, respectively, by the FPP algorithm, when applied with canonical
ordering π (resp. τ).

Property 3. For i = 1, 2, . . . , r, the sets Mπ
m(zi) and Mτ

m(zi) coincide.

Let π = (u1 = u, u2 = v, . . . , um) and τ = (v1 = u, v2 = v, . . . , vm). Also, let Γ and Φ be the canonical
drawings of H that correspond to π and τ , respectively. In the base case we have m = 3. Then the
statements of Claim 2 and Property 3 are trivial. Indeed, the first two vertices in any canonical ordering
of H with first vertex u are respectively u and v, hence there is a unique canonical ordering that extends
DH , there is a unique canonical drawing with base edge (u, v), and we have Mπ

3 (z1) = Mτ
3 (z1) = {u1, u2, u3},

Mπ
3 (z2) = Mτ

3 (z2) = {u2, u3}, and Mπ
3 (z3) = Mτ

3 (z3) = {u2}.
Suppose now that m > 3. Assume that the statements of Claim 2 and Property 3 hold if H has m− 1

vertices. We prove that they also hold if H has m vertices. Let ℓ be the index such that vℓ is the same vertex
as um. We observe the following simple facts.

Property 4. We have ℓ ∈ {4, . . . ,m}.

Proof: The first three vertices are the same in any canonical drawing with first vertex u, hence v1, v2,
and v3 respectively coincide with u1, u2, and u3 and are different from um. □

Property 5. All the neighbors of vℓ in H precede vℓ in τ .

Proof: Since um is the last vertex of π, all the neighbors of um in H precede um in π, hence they also precede
vℓ = um in τ , as π and τ define the same canonical orientation of H. □

The proof now distinguishes two cases, depending on whether ℓ = m or not.
Case 1: um and vm are the same vertex. Let L be the (m− 1) vertex plane graph obtained from H

by removing the vertex um and its incident edges. Let w1, w2, . . . , ws be the clockwise order of the vertices
along the outer face of H and let wp, wp+1, . . . , wq be the neighbors of um in H, for some 1 ≤ p < q ≤ s.
Also, let λ and ξ be the vertex orderings of L obtained from π and τ , respectively, by removing the vertex
um. Finally, let Mλ

m−1(w1),M
λ
m−1(w2), . . . ,M

λ
m−1(ws) (let Mξ

m−1(w1), M
ξ
m−1(w2), . . ., M

ξ
m−1(ws)) be the

sets that are associated to the vertices w1, w2, . . . , ws by the FPP algorithm, when applied with canonical
ordering λ (resp. ξ). We next prove the following.

Lemma 12. λ and ξ are canonical orderings of L; furthermore, λ and ξ define the same canonical orientation
of L.

Proof: First, L is biconnected, as it coincides with the subgraph Hm−1 of H induced by the first m− 1
vertices of π, which is biconnected by Condition (CO-1) of π. We show that λ is a canonical ordering of L;
the proof that ξ is also a canonical ordering of L is analogous. The first and second vertex of λ are u and
v, since the same is true for π and since m > 3. Also, for k = 3, . . . ,m− 2, we have that conditions (CO-1)
and (CO-2) hold for the subgraph Lk of L induced by the first k vertices in λ, given that this coincides with
the subgraph Hk of H induced by the first k vertices in π and given that π is a canonical ordering of H.
Finally, λ and ξ define the same canonical orientation of L, since the orientations of L defined by λ and ξ
both coincide with the orientation obtained from DH by removing um and its incident edges. □

By Lemma 12, we have that λ and ξ are canonical orderings of L. Let Λ and Ξ be the canonical drawings of
L corresponding to λ and ξ, respectively. By induction, Λ and Ξ are the same drawing and, for i = 1, 2, . . . , s,
we have Mλ

m−1(wi) = Mξ
m−1(wi).

The FPP algorithm constructs Γ from Λ by shifting each vertex in Mλ
m−1(wp+1) by one unit to the

right, by shifting each vertex in Mλ
m−1(wq) by one additional unit to the right, and by placing um at the

intersection point of the line through wp with slope +1, and of the line through wq with slope −1. Also, the

32

u=u1
v=u2

u3

u5 u4

u6u7
u8 u9

u10

(a) The canonical ordering π of H.

u=v1
v=v2

v3

v4 v8

v6v5
v9 v10

v7

(b) The canonical ordering τ of H.

Fig. 10: The case in which um and vm are not the same vertex. In this example, we have
ℓ = 7. Then σ7 = (v1, v2, v3, v4, v5, v6, v7, v8, v9, v10), σ8 = (v1, v2, v3, v4, v5, v6, v8, v7, v9, v10), σ9 =
(v1, v2, v3, v4, v5, v6, v8, v9, v7, v10), and σ10 = (v1, v2, v3, v4, v5, v6, v8, v9, v10, v7).

FPP algorithm constructs Φ from Ξ by shifting each vertex in Mξ
m−1(wp+1) by one unit to the right, by

shifting each vertex in Mξ
m−1(wq) by one additional unit to the right, and by placing um at the intersection

point of the line through wp with slope +1, and of the line through wq with slope −1. Since Ξ coincides with

Λ, since Mξ
m−1(wp+1) = Mλ

m−1(wp+1), and since Mξ
m−1(wq) = Mλ

m−1(wq), we have that Φ and Γ are the
same drawing, as required.

By construction, the FPP algorithm defines: (i) Mπ
m(wi) = Mλ

m−1(wi) ∪ {um}, for i = 1, . . . , p; (ii)

Mπ
m(um) = Mλ

m−1(wp+1) ∪ {um}; (iii) Mπ
m(wi) = Mλ

m−1(wi), for i = q, . . . , s; (iv) Mτ
m(wi) = Mξ

m−1(wi) ∪
{um}, for i = 1, . . . , p; (v) Mτ

m(um) = Mξ
m−1(wp+1) ∪ {um}; and (vi) Mτ

m(wi) = Mξ
m−1(wi), for i = q, . . . , s.

Since Mξ
m−1(wi) = Mλ

m−1(wi), for i = 1, . . . , s, it follows that Mπ
m(zi) = Mτ

m(zi), for i = 1, . . . , r, as required.
Case 2: um and vm are not the same vertex. In this case, by Property 4, we have that um coincides

with vℓ, for some ℓ ∈ {4, . . . ,m− 1}. Our proof uses a sequence of canonical orderings σℓ+1, σℓ+2, . . ., σm of
H, where for j = ℓ+ 1, . . . ,m, the ordering σj is defined as (v1, . . ., vℓ−1, vℓ+1, . . .,vj ,vℓ,vj+1, . . . , vm). That
is, the order of the vertices of H in σj coincides with the one in τ , except that vℓ is shifted to the j-th position.
See Fig. 10 for an example. We first prove that σℓ+1, σℓ+2, . . . , σm are indeed canonical orderings of H.

Lemma 13. For j = ℓ+ 1, . . . ,m, we have that σj is a canonical ordering of H; furthermore, the canonical
orientation of H defined by σj is DH .

Proof: First, since um coincides with vℓ, for some ℓ ∈ {4, . . . ,m− 1}, the first and second vertex of σj

are u and v, since the same is true for τ . For k = 3, . . . ,m, let Hτ
k and Hj

k be the plane subgraphs induced

by the first k vertices of H in τ and in σj , respectively. We now prove that Hj
k satisfies conditions (CO-1)

and (CO-2), for k = 3, . . . ,m− 1.

– Condition (CO-1). For k = 3, . . . , ℓ − 1, j, j + 1, . . . ,m − 1, we have that Hj
k is biconnected, because

it coincides with Hτ
k , and because Hτ

k satisfies condition (CO-1). We next prove that the graphs Hj
ℓ ,

Hj
ℓ+1, . . ., H

j
j−1 are biconnected. The vertices vℓ+1, vℓ+2, . . . , vj are not neighbors of vℓ in H, since by

Property 5 all the neighbors of vℓ in H precede vℓ in τ and hence are among v1, v2, . . . , vℓ−1. Also, for
k = ℓ, ℓ+ 1, . . . , j − 1, we have that Hj

k is the graph obtained from Hτ
k+1 by removing vℓ and its incident

edges. Hence, for k = ℓ− 1, ℓ, . . . , j− 2, the (k+1)-th vertex of σj has at least two neighbors in Hj
k, given

that it coincides with the (k + 2)-th vertex of τ , which has at least two neighbors in Hτ
k+1 since Hτ

k+1

satisfies condition (CO-2), and given that it is not a neighbor of vℓ. This, together with the fact that
Hj

ℓ−1 is biconnected, implies the biconnectivity of Hj
ℓ , H

j
ℓ+1, . . ., H

j
j−1.

– Condition (CO-2). For k = 3, . . . , ℓ− 2, j, j + 1, . . . ,m− 1, the (k + 1)-th vertex of σj is in the outer face

of Hj
k because it is the same vertex as the (k + 1)-th vertex of τ , because Hj

k coincides with Hτ
k , and

because the (k + 1)-th vertex of τ is in the outer face of Hτ
k , given that Hτ

k satisfies condition (CO-2).

For k = ℓ− 1, ℓ, . . . , j − 2, the (k + 1)-th vertex of σj is in the outer face of Hj
k because it is the same

vertex as the (k + 2)-th vertex of τ , because Hj
k is a subgraph of Hτ

k+1, and because the (k + 2)-th vertex

33

of τ is in the outer face of Hτ
k+1, given that Hτ

k+1 satisfies condition (CO-2). Finally, the j-th vertex of

σj , that is vℓ = um, is in the outer face of Hj
j−1 because it is in the outer face of the plane subgraph

Hm−1 of H induced by the first m− 1 vertices of π, given that Hm−1 satisfies condition (CO-2).

This proves that σj is a canonical ordering. The fact that the canonical orientation Dj defined by σj is
DH follows from the following facts: (i) the canonical orientation defined by τ is DH ; (ii) the orderings τ and
σj coincide on the vertices of H different from vℓ – this implies that the orientation of every edge that is not
incident to vℓ is the same in Dj and in DH ; and (iii) the vertex vℓ follows its neighbors in H both in τ and in
σj – this implies that the orientation of every edge incident to vℓ is the same in Dj and in DH . □

In order to simplify the description, let σℓ coincide with τ . For j = ℓ, . . . ,m, let Σj be the canonical
drawing of H that corresponds to σj . Also, let M j

m(z1), M
j
m(z2), . . ., M

j
m(zr) be the sets that are associated

with the vertices z1, z2, . . . , zr, respectively, by the FPP algorithm, when applied with canonical ordering σj .
In order to prove that Γ and Φ = Σℓ are the same drawing and that Mπ

m(zi) = Mτ
m(zi), for i = 1, . . . , r, it

suffices to prove that:

(i) for j = ℓ, . . . ,m− 1, it holds that Σj and Σj+1 are the same drawing and, for j = ℓ, . . . ,m− 1 and for
i = 1, . . . , r, it holds that M j

m(zi) = M j+1
m (zi).

(ii) Σm and Γ are the same drawing and, for i = 1, . . . , r, it holds that Mm
m (zi) = Mπ

m(zi).

We have that (ii) follows by Case 1. Indeed, Σm and Γ define the same canonical orientation of H, by
Lemma 13, and the last vertex of both σm and π is vℓ = um. Hence, it only remains to prove (i). Thus,
consider any j ∈ {ℓ, . . . ,m − 1}. We need to prove that Σj and Σj+1 are the same drawing and that, for
i = 1, . . . , r, it holds that M j

m(zi) = M j+1
m (zi).

We introduce some notation. For k = 3, . . . ,m, let Hj
k (let Hj+1

k) be the plane subgraph of H induced

by the first k vertices of σj (resp. of σj+1). Also, let Σj
k (let Σj+1

k) be the drawing of Hj
k (resp. of Hj+1

k)
that is constructed by the FPP algorithm when applied with canonical ordering σj (resp. σj+1), on the way
of constructing Σj (resp. Σj+1). Furthermore, let wk

1 = u,wk
2 , . . . , w

k
rk

= v (let zk1 = u, zk2 , . . . , z
k
sk

= v) be

the clockwise order of the vertices along the outer face of Hj
k (resp. of Hj+1

k). Finally, for i = 1, . . . , rk (for

i = 1, . . . , sk), let M
j
k(w

k
i) (resp. let M

j+1
k (zki)) be the set that is associated to the vertex wk

i (resp. to the
vertex zki) by the FPP algorithm, when applied with canonical ordering σj (resp. σj+1).

The whole reason for introducing the sequence of canonical orderings σℓ, σℓ+1, . . ., σm of H is that
canonical orderings that are consecutive in the sequence are very similar to one another. Indeed, σj and σj+1

coincide, except for the j-th and (j + 1)-th vertex, which are swapped. Specifically, the j-th and (j + 1)-th
vertex of σj are vℓ and vj+1, respectively, while the j-th and (j + 1)-th vertex of σj+1 are vj+1 and vℓ,

respectively. This implies that, for k = 3, . . . , j − 1, j + 1, . . . ,m, the graphs Hj
k and Hj+1

k coincide. Further,

since σj and σj+1 coincide on the first j − 1 vertices, the drawings Σj
j−1 and Σj+1

j−1 of Hj
j−1 = Hj+1

j−1 coincide

and, for i = 1, . . . , rj−1 = sj−1, the set M j
j−1(w

j−1
i) coincides with M j+1

j−1 (w
j−1
i).

Note that Hj
j and Hj+1

j are not the same graph, as the vertex set of the former is V (Hj
j−1) ∪ {vℓ}, while

the one of the latter is V (Hj
j−1) ∪ {vj+1}. Thus, obviously, Σj

j and Σj+1
j are not the same drawing, and the

sets M j
j (w

j
i) and M j+1

j (zji) associated to the vertices on the boundary of Hj
j and Hj+1

j , respectively, do not
coincide. However, we are going to prove that all the required equalities are recovered at the next step of the
FPP algorithm, when vj+1 and vℓ are inserted into Hj

j and Hj+1
j to form Hj

j+1 = Hj+1
j+1 .

Recall that the boundary of Hj
j−1 = Hj+1

j−1 is wj−1
1 , wj−1

2 , . . . , wj−1
rj−1

. In the discussion that follows, for ease

of notation, we drop the apex j−1 from these vertices, which are then denoted by w1, w2, . . . , wrj−1 . Since all
the neighbors of vℓ precede vℓ in τ , by Property 5, and since vj+1 follows vℓ in τ , it follows that vℓ and vj+1

are not neighbors. This, together with condition (CO-2) for Hj
j and Hj

j+1, implies that the neighbors of vℓ in

Hj
j+1 = Hj+1

j+1 are wp, wp+1, . . . , wq, for some 1 ≤ p < q ≤ rj−1, that the neighbors of vj+1 in Hj
j+1 = Hj+1

j+1

are wp′ , wp′+1, . . . , wq′ , for some 1 ≤ p′ < q′ ≤ rj−1, and that either q ≤ p′ or q′ ≤ p (that is, the sequences

of neighbors of vℓ and vj+1 along the boundary of Hj
j−1 = Hj+1

j−1 are disjoint, except for the last vertex of one

34

of them, which might coincide with the first vertex of the other one). Assume that q ≤ p′, as the case q′ ≤ p
is symmetric. Then the graphs Hj

j , H
j+1
j , and Hj

j+1 = Hj+1
j+1 have the following boundaries.

– Hj
j has boundary w1, . . . , wp, vℓ, wq, . . . , wrj−1

;

– Hj+1
j has boundary w1, . . . , wp′ , vj+1, wq′ , . . . , wrj−1

; and

– Hj
j+1 = Hj+1

j+1 has boundary w1, . . ., wp, vℓ, wq, . . ., wp′ , vj+1, wq′ , . . ., wrj−1 .

Since M j
j−1(wi) = M j+1

j−1 (wi), for i = 1, . . . , rj−1, the FPP algorithm defines:

(i) M j
j (wi) = M j

j−1(wi) ∪ {vℓ}, for i = 1, . . . , p;

(ii) M j
j (vℓ) = M j

j−1(wp+1) ∪ {vℓ}; and
(iii) M j

j (wi) = M j
j−1(wi), for i = q, . . . , rj−1.

(iv) M j+1
j (wi) = M j

j−1(wi) ∪ {vj+1}, for i = 1, . . . , p′;

(v) M j+1
j (vj+1) = M j

j−1(wp′+1) ∪ {vj+1}; and
(vi) M j+1

j (wi) = M j
j−1(wi), for i = q′, . . . , rj−1.

(vii) M j
j+1(wi) = M j

j (wi) ∪ {vj+1}, for i = 1, . . . , p;

(viii) M j
j+1(vℓ) = M j

j (vℓ) ∪ {vj+1};
(ix) M j

j+1(wi) = M j
j (wi) ∪ {vj+1}, for i = q, . . . , p′;

(x) M j
j+1(vj+1) = M j

j (wp′+1) ∪ {vj+1}; and
(xi) M j

j+1(wi) = M j
j (wi), for i = q′, . . . , rj−1.

(xii) M j+1
j+1 (wi) = M j+1

j (wi) ∪ {vℓ}, for i = 1, . . . , p;

(xiii) M j+1
j+1 (vℓ) = M j+1

j (wp+1) ∪ {vℓ};
(xiv) M j+1

j+1 (wi) = M j+1
j (wi), for i = q, . . . , p′;

(xv) M j+1
j+1 (vj+1) = M j+1

j (vj+1); and

(xvi) M j+1
j+1 (wi) = M j+1

j (wi), for i = q′, . . . , rj−1.

We now prove that the required equalities for the sets associated by the FPP algorithm to the vertices along
the boundary of Hj

j+1 = Hj+1
j+1 are indeed satisfied.

– For i = 1, . . . , p, by equalities (vii) and (i), we have M j
j+1(wi) = M j

j−1(wi)∪{vℓ, vj+1}. By equalities (xii)

and (iv), we have M j+1
j+1 (wi) = M j

j−1(wi) ∪ {vℓ, vj+1}. Hence, M j
j+1(wi) = M j+1

j+1 (wi), as required.

– By equalities (viii) and (ii), we have M j
j+1(vℓ) = M j

j−1(wp+1) ∪ {vℓ, vj+1}. By equalities (xiii) and (iv),

we have M j+1
j+1 (vℓ) = M j

j−1(wp+1) ∪ {vℓ, vj+1}. Hence, M j
j+1(vℓ) = M j+1

j+1 (vℓ), as required.

– For i = q, . . . , p′, by equalities (ix) and (iii), we have M j
j+1(wi) = M j

j−1(wi) ∪ {vj+1}. By equalities (xiv)

and (iv), we have M j+1
j+1 (wi) = M j

j−1(wi) ∪ {vj+1}. Hence, M j
j+1(wi) = M j+1

j+1 (wi), as required.

– By equalities (x) and (iii), we have M j
j+1(vj+1) = M j

j−1(wp′+1) ∪ {vj+1}. By equalities (xv) and (v), we

have M j+1
j+1 (vj+1) = M j

j−1(wp′+1) ∪ {vj+1}. Hence, M j
j+1(vj+1) = M j+1

j+1 (vj+1), as required.

– Finally, for i = q′ + 1, . . . , rj−1, by equalities (xi) and (iii), we have M j
j+1(wi) = M j

j−1(wi). By equalities

(xvi) and (vi), we have M j+1
j+1 (wi) = M j

j−1(wi). Hence, M j
j+1(wi) = M j+1

j+1 (wi), as required.

In order to prove that Σj
j+1 and Σj+1

j+1 are the same drawing, we first observe that all the vertices of Hj
j−1

have in Σj
j+1 and Σj+1

j+1 the same y-coordinate as in Σj
j−1 and in Σj+1

j−1 , respectively. This is because the j-th

and (j + 1)-th step of the FPP algorithm shift the vertices in the drawing of Hj
j−1 only horizontally and

because Σj
j−1 and Σj+1

j−1 are the same drawing.

In order to deal with the x-coordinates of the vertices of Hj
j−1 in Σj

j+1 and Σj+1
j+1 , we partition the vertices

of Hj
j−1 into five sets V0, V1, V2, V3, V4 defined as follows:

35

– V0 := M j
j−1(w1) \M j

j−1(wp+1),

– V1 := M j
j−1(wp+1) \M j

j−1(wq),

– V2 := M j
j−1(wq) \M j

j−1(wp′+1),

– V3 := M j
j−1(wp′+1) \M j

j−1(wq′), and

– V4 := M j
j−1(wq′).

We claim that, both in Σj
j+1 and in Σj+1

j+1 , for i = 0, . . . , 4, the x-coordinate of a vertex in Vi coincides with

the one in Σj
j−1 = Σj+1

j−1 plus i. This, together with the fact that Σj
j−1 and Σj+1

j−1 are the same drawing,

implies that every vertex of Hj
j−1 has the same x-coordinate in Σj

j+1 and in Σj+1
j+1 .

By the FPP algorithm, the x-coordinate of every vertex z of Hj
j−1 in Σj

j+1 is the same as in Σj
j−1,

plus one unit for each set z belongs to among M j
j−1(wp+1), M j

j−1(wq), M j
j (wp′+1), and M j

j (wq′). By

equality (iii), the last two sets coincide with M j
j−1(wp′+1) and M j

j−1(wq′), respectively. Analogously, the

x-coordinate of every vertex z in Σj+1
j+1 is the same as in Σj

j−1, plus one unit for each set z belongs to among

M j+1
j−1 (wp′+1), M

j+1
j−1 (wq′), M

j+1
j (wp+1), and M j+1

j (wq). The first two sets coincide with M j
j−1(wp′+1) and

M j
j−1(wq′), respectively. Further, by equality (iv), the last two sets coincide with M j

j−1(wp+1) ∪ {vj+1} and

M j
j−1(wq) ∪ {vj+1}, respectively.

– First, any vertex z ∈ V0 belongs to neither of the sets M j
j−1(wp+1) ∪ {vj+1}, M j

j−1(wq) ∪ {vj+1},
M j

j−1(wp′+1), M
j
j−1(wq′), given that vj+1 does not belong to Hj

j−1, given that V0 ∩ M j
j−1(wp+1) = ∅,

by definition, and given that M j
j−1(wp+1) ⊇ M j

j−1(wq) ⊃ M j
j−1(wp′+1) ⊇ M j

j−1(wq′). Hence, the x-

coordinate of z in both Σj
j+1 and Σj+1

j+1 coincides with the one in Σj
j−1 = Σj+1

j−1 .

– Second, any vertex z ∈ V1 belongs to the set M j
j−1(wp+1), by definition, and to neither of the sets

M j
j−1(wq) ∪ {vj+1}, M j

j−1(wp′+1), M
j
j−1(wq′), given that vj+1 does not belong to Hj

j−1, given that

V1 ∩M j
j−1(wq) = ∅, by definition, and given that M j

j−1(wq) ⊃ M j
j−1(wp′+1) ⊇ M j

j−1(wq′). Hence, the

x-coordinate of z in both Σj
j+1 and Σj+1

j+1 coincides with the one in Σj
j−1 = Σj+1

j−1 plus one.

– Third, any vertex z ∈ V2 belongs to the sets M j
j−1(wp+1) and M j

j−1(wq), by definition and since

M j
j−1(wp+1) ⊇ M j

j−1(wq), and to neither of the sets M j
j−1(wp′+1) and M j

j−1(wq′), given that V2 ∩
M j

j−1(wp′+1) = ∅, by definition, and given that M j
j−1(wp′+1) ⊇ M j

j−1(wq′). Hence, the x-coordinate of z

in both Σj
j+1 and Σj+1

j+1 coincides with the one in Σj
j−1 = Σj+1

j−1 plus two.

– Fourth, any vertex z ∈ V3 belongs to the sets M j
j−1(wp+1), M

j
j−1(wq), and M j

j−1(wp′+1), by definition

and since M j
j−1(wp+1) ⊇ M j

j−1(wq) ⊃ M j
j−1(wp′+1), and does not belong to M j

j−1(wq′), given that

V3 ∩M j
j−1(wq′) = ∅, by definition. Hence, the x-coordinate of z in both Σj

j+1 and Σj+1
j+1 coincides with

the one in Σj
j−1 = Σj+1

j−1 plus three.

– Finally, any vertex z ∈ V4 belongs to all of the sets M j
j−1(wp+1), M

j
j−1(wq), M

j
j−1(wp′+1), and M j

j−1(wq′),

by definition and since M j
j−1(wp+1) ⊇ M j

j−1(wq) ⊃ M j
j−1(wp′+1) ⊇ M j

j−1(wq′). Hence, the x-coordinate

of z in both Σj
j+1 and Σj+1

j+1 coincides with the one in Σj
j−1 = Σj+1

j−1 plus four.

It remains to prove that vℓ and vj+1 have the same coordinates in Σj
j+1 and Σj+1

j+1 . Denote by Ω(z) the
position of a vertex z in a drawing Ω.

– By construction, Σj
j (vℓ) coincides with the intersection point of the line with slope +1 through Σj

j−1(wp)

and the line with slope −1 through the point two units to the right of Σj
j−1(wq). Since vℓ belongs neither

to M j
j (wp′+1) nor to M j

j (wq′), as by equality (iii) such sets coincide with M j
j−1(wp′+1) and M j

j−1(wq′),

respectively, it follows that Σj
j+1(vℓ) = Σj

j (vℓ).

36

Note that Σj+1
j (wp) = Σj+1

j−1(wp) = Σj
j−1(wp); indeed, the first equality holds true because wp belongs

neither to M j+1
j−1 (wp′+1) nor to M j+1

j−1 (wq′), and the second equality holds true since Σj
j−1 = Σj+1

j−1 .

Analogously, Σj+1
j (wq) = Σj+1

j−1(wq) = Σj
j−1(wq). Hence, Σ

j+1
j+1(vℓ) coincides with the intersection point

of the line with slope +1 through Σj
j−1(wp) and the line with slope −1 through the point two units to

the right of Σj
j−1(wq), thus vℓ has the same coordinates in Σj

j+1 and Σj+1
j+1 .

– By construction and since Σj
j−1 = Σj+1

j−1 , we have that Σj+1
j (vj+1) coincides with the intersection point

p of the line with slope +1 through Σj
j−1(wp′) and the line with slope −1 through the point two units

to the right of Σj
j−1(wq′). Since vj+1 belongs both to M j+1

j (wp+1) and to M j+1
j (wq), as by equality (iv)

such sets coincide with M j
j−1(wp+1) ∪ {vj+1} and with M j

j−1(wq) ∪ {vj+1}, respectively, it follows that
Σj+1

j+1(vj+1) coincides with the point two units to the right of p.

Note that Σj
j (wp′) coincides with the point two units to the right of Σj

j−1(wp′). Indeed, wp′ belongs both

to M j
j−1(wp+1) and to M j

j−1(wq). Analogously, Σ
j
j (wq′) coincides with the point two units to the right of

Σj
j−1(wq′). Hence, Σ

j
j+1(vj+1) coincides with the intersection point of the line with slope +1 through the

point two units to the right of Σj
j−1(wp′) and the line with slope −1 through the point two units to the

right of Σj
j−1(wq′), thus coincides with the point two units to the right of p. Hence, vj+1 has the same

coordinates in Σj
j+1 and Σj+1

j+1 .

This concludes the proof that Σj
j+1 and Σj+1

j+1 are the same drawing.

Finally, since Σj
j+1 and Σj+1

j+1 are the same drawing, since the sets M j
j+1(w

j+1
i) and M j+1

j+1 (z
j+1
i = wj+1

i)
coincide, for i = 1, . . . , rj+1 = sj+1, and since σj and σj+1 coincide on the last m− (j + 1) vertices, it follows

that Σj
k and Σj+1

k are the same drawing, for k = j +2, . . . ,m, and that the sets M j
k(w

k
i) and M j+1

k (zki = wk
i)

coincide, for k = j + 2, . . . ,m and for i = 1, . . . , rk = sk. Since the drawings Σj
m and Σj+1

m coincide with
Σj and Σj+1, respectively, it follows that Σj and Σj+1 are the same drawing, as required. Also, since
for i = 1, . . . , r = rm = sm, the set M j

m(zi) coincides with M j
m(wm

i) and the set M j+1
m (zi) coincides with

M j+1
m (zmi), it follows that M j

m(zi) = M j+1
m (zi), as required. This completes the induction and hence the

proof of Claim 2 and Property 3. It follows that the function f is surjective, which concludes the proof of
Theorem 5.

Lemma 11 and Theorem 5 imply the following.

Lemma 14. Let G be an n-vertex maximal plane graph and let (u, v, z) be the cycle delimiting its outer face,
where u, v, and z appear in this counter-clockwise order along the cycle. There exists an algorithm with O(n)
setup time and O(n) space usage that lists all canonical drawings of G with base edge (u, v) with O(n) delay.

Theorem 6. Let G be an n-vertex maximal plane (planar) graph. There exists an algorithm C1 (resp. C2)
with O(n) setup time and O(n) space usage that lists all canonical drawings of G with O(n) delay.

Proof: Algorithm C1 uses the algorithm for the proof of Lemma 14 applied three times, namely once for
each choice of the base edge among the three edges incident to the outer face of the given maximal plane
graph. Algorithm C2 uses algorithm C1 applied 4n− 8 times, since there are 4n− 8 maximal plane graphs
which are isomorphic to a given maximal plane graph (see the proof of Theorem 3). Note that any two
canonical drawings produced by different applications of algorithm C1 differ on the three vertices incident to
the outer face, or on their coordinates in the drawing. □

5 Enumeration of Schnyder Woods and Schnyder Drawings

In this section, we show how the enumeration algorithm for canonical orientations from Section 3 can be used
in order to provide efficient algorithms for the enumeration of Schnyder woods and Schnyder drawings. We
start with the following theorems.

37

Theorem 7. Let G be an n-vertex maximal plane (planar) graph. There exists an algorithm M1 (resp. M2)
with O(n) setup time and O(n) space usage that lists all Schnyder woods of G with O(n) delay.

Proof: We first discuss algorithm M1, hence let G be an n-vertex maximal plane graph. As proved by
de Fraysseix and Ossona De Mendez [22, Theorem 3.3], there is a bijection between the Schnyder woods of
G and the canonical orientations of G. Given a canonical orientation D of G, the corresponding Schnyder
wood W = (T1, T2, T3) can be obtained as follows (see also [14,16,26,27,29,43,52]). For every internal vertex
w of G, let e1, . . . , ek be the counter-clockwise order of the incoming edges at w in D, where k ≥ 2. Assign e1
with color 1 and orient it (in W) so that it is outgoing at w; also, assign ek with color 2 and orient it (in W)
so that it is outgoing at w; finally, assign e2, . . . , ek−1 with color 3 and orient them (in W) so that they are
incoming at w. The construction of W is completed by assigning all the edges that are incident to the sink of
D and that do not belong to the boundary of G with color 3 and orienting them (in W) so that they are
incoming at the sink of D. Since the construction of W from D can be easily implemented in O(n) time and
space, it descends from Theorem 3 that algorithm M1 satisfies the required properties.

Algorithm M2 uses algorithm M1 applied 4n− 8 times, since there are 4n− 8 maximal plane graphs
isomorphic to a given maximal planar graph (see the proof of Theorem 3). Note that any two Schnyder woods
produced by different applications of algorithm M1 differ on the triple of vertices that have no outgoing edge.

□

We now turn our attention to the enumeration of the planar straight-line drawings produced by the
algorithm by Schnyder [52], known as Schnyder drawings. We start by describing such an algorithm, which
takes as input (see Fig. 11a):

– an n-vertex maximal plane graph G, whose outer face is delimited by a cycle (u, v, z), where u, v, and z
appear in this counter-clockwise order along the outer face of G; and

– a Schnyder wood W = (T1, T2, T3) of G.

For ease of notation, we let u1, u2, and u3 be alternative labels for u, v, and z, respectively, so that Ti contains
ui, for i = 1, 2, 3. For a cycle C in G, let #f (C) denote the number of internal faces of G in the interior of C.

u=u1

1

2
3

4
5

6

v=u2

z=u3

(a)

u3

u2u1

Cx(4)

Cy(4)

1

2
3

4
5

6

P1(4) P2(4)

P3(4)

(b)

u2u1

u3

1

3

2

6

4

5

(c)

Fig. 11: (a) A maximal plane graph G and a Schnyder wood W of G. (b) Paths P1(4), P2(4), and P3(4), and
cycles Cx(4) and Cy(4), where 4 is an internal vertex of G. Note that #f (Cx(4)) = 5 and #f (Cy(4)) = 5. (c)
The Schnyder drawing s(W) of G.

Schnyder’s algorithm assigns coordinates (0, 0), (2n− 5, 0), and (0, 2n− 5) to the vertices u1, u2, and u3,
respectively. Consider any internal vertex w. For i = 1, 2, 3, properties (S-1) and (S-2) of W imply that Ti
contains a directed path Pi(w) from w to ui; see Fig. 11b. Moreover, P1(w), P2(w), and P3(w) have w as the
only common vertex [52]. Let Cx(w) be the cycle composed of the paths P1(w) and P3(w), and of the edge
(u1, u3). Also, let Cy(w) be the cycle composed of the paths P1(w) and P2(w), and of the edge (u1, u2). Then
Schnyder’s algorithm assigns coordinates (#f (Cx(w)),#f (Cy(w))) to w; see Fig. 11c.

We now prove the main ingredient of our enumeration algorithm for Schnyder drawings.

38

Theorem 8. Let G be an n-vertex maximal plane graph. There exists a bijective function from the Schnyder
woods of G to the Schnyder drawings of G. Also, given a Schnyder wood of G, the corresponding Schnyder
drawing of G can be constructed in O(n) time.

Proof: The bijective function s that proves the statement is simply Schnyder’s algorithm. The second part of
the statement then follows from the fact that this algorithm can be implemented in O(n) time [52].

In order to prove that s is bijective, we prove that it is injective (that is, for any two distinct Schnyder
woods W1 and W2 of G, we have that s(W1) and s(W2) are not the same drawing) and that it is surjective
(that is, for any Schnyder drawing Γ , there exists a Schnyder wood W such that s(W) is Γ). That s is
surjective is actually obvious, as a Schnyder drawing Γ is generated by applying Schnyder’s algorithm to
some Schnyder’s wood W. Then s(W) = Γ . In the following, we prove that s is injective.

Consider any Schnyder drawing Γ . By definition of Schnyder drawing, there is at least one Schnyder
wood W such that s(W) = Γ . We prove that there is at most one such Schnyder wood, that is, Γ uniquely
determines W.

(a) (b)

Fig. 12: Slopes of the edges in a Schnyder drawing on (a) a triangular grid and (b) a square grid.

First, we recall that Schnyder drawings are often constructed on a triangular grid, rather than on the
square grid. On the triangular grid, a Schnyder drawing constructed from a Schnyder wood W = (T1, T2, T3)
has the property that, for each vertex v, the edges of T1, T2, and T3 incoming into v have slopes in the intervals
(0◦, 60◦), (120◦, 180◦), and (240◦, 300◦), respectively, while the edges of T1, T2, and T3 outgoing from v have
slopes in the intervals (180◦, 240◦), (300◦, 360◦), and (60◦, 120◦), respectively; see, e.g., [27] and Fig. 12a.
Hence, back on the square grid, a Schnyder drawing constructed from a Schnyder wood W = (T1, T2, T3) has
the property that, for each vertex v, the edges of T1, T2, and T3 incoming into v have slopes in the intervals
(0◦, 90◦), (135◦, 180◦), and (270◦, 315◦), respectively, while the edges of T1, T2, and T3 outgoing from v have
slopes in the intervals (180◦, 270◦), (315◦, 360◦), and (90◦, 135◦), respectively; see Fig. 12b. Thus, for each
edge (u, v) of G, whether (u, v) belongs to T1, T2, or T3, and whether (u, v) is directed from u to v or vice
versa, can be uniquely determined by the slope of the edge (u, v) in Γ . This concludes the proof that s is an
injective function and hence the proof of Theorem 8. □

We get the following.

Theorem 9. Let G be an n-vertex maximal plane (planar) graph. There exists an algorithm N1 (resp. N2)
with O(n) setup time and O(n) space usage that lists all Schnyder drawings of G with O(n) delay.

Proof: Algorithm N1 directly descends from Theorem 7 and Theorem 8. Algorithm N2 uses algorithm N2

applied 4n− 8 times, since there are 4n− 8 maximal plane graphs which are isomorphic to a given maximal

39

planar graph (see the proof of Theorem 3). Note that any two Schnyder drawings produced by different
applications of algorithm N1 differ on the three vertices incident to the outer face, or on their coordinates in
the drawing. □

6 Conclusions

In this paper, we considered the problem of enumerating two fundamental combinatorial structures of maximal
planar graphs, i.e., canonical orderings and Schnyder woods. By exploiting their connection with canonical
orientations, we developed efficient enumeration algorithms for such structures. We also proved novel, and
in our opinion interesting, bijections between canonical orientations and canonical drawings, and between
Schnyder woods and Schnyder drawings. This allowed us to empower our enumeration algorithms so that they
can enumerate drawings within this classical drawing styles. The worst-case delay between two consecutive
outputs of all our algorithms is linear in the graph size.

Our research initiates the study of graph-drawing enumeration algorithms and sparkles several interesting
questions in this domain. In general, given a graph G, for any given drawing style D, we may ask for the
existence of efficient algorithms to enumerate all drawings of G that respect D. Natural examples of problems
of this type include: (i) efficiently enumerating all the planar straight-line drawings of a given planar graph
within a grid of prescribed size; (ii) efficiently enumerating all the orthogonal representations of a given plane
graph with at most b bends in total; and (iii) efficiently enumerating all the upward planar embeddings of a
single-source digraph or of a triconnected digraph.

References

1. Md. Jawaherul Alam, Therese Biedl, Stefan Felsner, Michael Kaufmann, Stephen G. Kobourov, and Torsten
Ueckerdt. Computing cartograms with optimal complexity. Discret. Comput. Geom., 50(3):784–810, 2013.

2. Patrizio Angelini, Steven Chaplick, Sabine Cornelsen, Giordano Da Lozzo, and Vincenzo Roselli. Morphing
triangle contact representations of triangulations. Discret. Comput. Geom., 2023. To appear. doi:10.1007/

s00454-022-00475-9.
3. David Avis and Komei Fukuda. Reverse search for enumeration. Discret. Appl. Math., 65(1-3):21–46, 1996.

doi:10.1016/0166-218X(95)00026-N.
4. Imre Bárány and Günter Rote. Strictly convex drawings of planar graphs. Documenta Math., 11:369–391, 2006.
5. Jérémy Barbay, Luca Castelli Aleardi, Meng He, and J. Ian Munro. Succinct representation of labeled graphs.

Algorithmica, 62(1-2):224–257, 2012.
6. Valmir Carneiro Barbosa and Jayme Luiz Szwarcfiter. Generating all the acyclic orientations of an undirected

graph. Inf. Process. Lett., 72(1-2):71–74, 1999. doi:10.1016/S0020-0190(99)00120-9.
7. Ken Been, Eli Daiches, and Chee-Keng Yap. Dynamic map labeling. IEEE Trans. Vis. Comput. Graph.,

12(5):773–780, 2006.
8. Garrett Birkhoff. Rings of sets. Duke Mathematical Journal, 3(3):443 – 454, 1937. doi:10.1215/

S0012-7094-37-00334-X.
9. Sarah Blind, Kolja Knauer, and Petru Valicov. Enumerating k-arc-connected orientations. Algorithmica,

82(12):3588–3603, 2020. doi:10.1007/s00453-020-00738-y.
10. A. Bondy and U.S.R. Murty. Graph Theory. Graduate Texts in Mathematics. Springer London, 2011. URL:

https://books.google.it/books?id=HuDFMwZOwcsC.
11. Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, Dominique Poulalhon, and Gilles Schaeffer. Planar graphs, via

well-orderly maps and trees. Graphs Comb., 22(2):185–202, 2006.
12. Prosenjit Bose, Vida Dujmovic, Ferran Hurtado, Stefan Langerman, Pat Morin, and David R. Wood. A polynomial

bound for untangling geometric planar graphs. Discret. Comput. Geom., 42(4):570–585, 2009.
13. Prosenjit Bose, Joachim Gudmundsson, and Michiel H. M. Smid. Constructing plane spanners of bounded degree

and low weight. Algorithmica, 42(3-4):249–264, 2005.
14. Enno Brehm. 3-orientations and Schnyder 3-tree-decompositions. Master’s thesis, Freie Universität Berlin, 2000.
15. Jason Cantarella, Robert B. Kusner, and John M. Sullivan. On the minimum ropelength of knots and links.

Inventiones Mathematicae, 150:257–286, 2002.

40

https://doi.org/10.1007/s00454-022-00475-9
https://doi.org/10.1007/s00454-022-00475-9
https://doi.org/10.1016/0166-218X(95)00026-N
https://doi.org/10.1016/S0020-0190(99)00120-9
https://doi.org/10.1215/S0012-7094-37-00334-X
https://doi.org/10.1215/S0012-7094-37-00334-X
https://doi.org/10.1007/s00453-020-00738-y
https://books.google.it/books?id=HuDFMwZOwcsC

16. Luca Castelli Aleardi. Algorithms for Graphs on Surfaces: From Graph Drawing to Graph Encoding. Habilitation
thesis, Université de Paris, 2021.

17. Marek Chrobak and Thomas H Payne. A linear-time algorithm for drawing a planar graph on a grid. Information
Processing Letters, 54(4):241–246, 1995.

18. Richie Chih-Nan Chuang, Ashim Garg, Xin He, Ming-Yang Kao, and Hsueh-I Lu. Compact encodings of planar
graphs via canonical orderings and multiple parentheses. In Kim Guldstrand Larsen, Sven Skyum, and Glynn
Winskel, editors, 25th International Colloquium on Automata, Languages and Programming (ICALP’98), volume
1443 of LNCS, pages 118–129. Springer, 1998.

19. Alessio Conte, Roberto Grossi, Andrea Marino, and Romeo Rizzi. Efficient enumeration of graph orientations
with sources. Discret. Appl. Math., 246:22–37, 2018. doi:10.1016/j.dam.2017.08.002.

20. Giordano Da Lozzo, Anthony D’Angelo, and Fabrizio Frati. On the area requirements of planar greedy drawings
of triconnected planar graphs. In Donghyun Kim, R. N. Uma, Zhipeng Cai, and Dong Hoon Lee, editors, 26th
International Conference on Computing and Combinatorics (COCOON ’20), volume 12273 of Lecture Notes in
Computer Science, pages 435–447. Springer, 2020.

21. Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, and Vincenzo Roselli. Upward
planar morphs. Algorithmica, 82(10):2985–3017, 2020. doi:10.1007/s00453-020-00714-6.

22. Hubert de Fraysseix and Patrice Ossona de Mendez. On topological aspects of orientations. Discrete Math.,
229(1-3):57–72, 2001.

23. Hubert de Fraysseix, Patrice Ossona de Mendez, and Pierre Rosenstiehl. On triangle contact graphs. Comb.
Probab. Comput., 3:233–246, 1994.

24. Hubert de Fraysseix, Patrice Ossona de Mendez, and Pierre Rosenstiehl. Bipolar orientations revisited. Discret.
Appl. Math., 56(2-3):157–179, 1995. doi:10.1016/0166-218X(94)00085-R.

25. Hubert de Fraysseix, János Pach, and Richard Pollack. Small sets supporting Fáry embeddings of planar graphs.
In Janos Simon, editor, 20th Annual ACM Symposium on Theory of Computing (STOC ’98), pages 426–433.
ACM, 1988.

26. Hubert de Fraysseix, János Pach, and Richard Pollack. How to draw a planar graph on a grid. Combinatorica,
10(1):41–51, 1990.

27. Raghavan Dhandapani. Greedy drawings of triangulations. Discret. Comput. Geom., 43(2):375–392, 2010.
28. Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing: Algorithms for the

Visualization of Graphs. Prentice-Hall, 1999.
29. Giuseppe Di Battista, Roberto Tamassia, and Luca Vismara. Output-sensitive reporting of disjoint paths.

Algorithmica, 23(4):302–340, 1999.
30. Vida Dujmovic, David Eppstein, Matthew Suderman, and David R. Wood. Drawings of planar graphs with few

slopes and segments. Comput. Geom., 38(3):194–212, 2007.
31. Stefan Felsner. Convex drawings of planar graphs and the order dimension of 3-polytopes. Order, 18(1):19–37,

2001.
32. Stefan Felsner. Lattice structures from planar graphs. Electron. J. Comb., 11(1), 2004. doi:10.37236/1768.
33. Stefan Felsner and Florian Zickfeld. Schnyder woods and orthogonal surfaces. Discret. Comput. Geom., 40(1):103–

126, 2008.
34. Robert Ganian, Petr Hlinený, Joachim Kneis, Daniel Meister, Jan Obdrzálek, Peter Rossmanith, and Somnath

Sikdar. Are there any good digraph width measures? J. Comb. Theory, Ser. B, 116:250–286, 2016.
35. Michel Habib, Raoul Medina, Lhouari Nourine, and George Steiner. Efficient algorithms on distributive lattices.

Discret. Appl. Math., 110(2-3):169–187, 2001. doi:10.1016/S0166-218X(00)00258-4.
36. Joel Hass and J. C. Lagarias. The number of Reidemeister moves needed for unknotting. J. Amer. Math. Soc.,

14:399–428, 2001.
37. Joel Hass, J. C. Lagarias, and Nicholas Pippenger. The computational complexity of knot and link problems. J.

ACM, 46(2):185–211, 1999.
38. Thomas P. Hayes. A simple condition implying rapid mixing of single-site dynamics on spin systems. In 47th

Annual IEEE Symposium on Foundations of Computer Science (FOCS ’06), pages 39–46. IEEE Computer Society,
2006.

39. Xin He, Ming-Yang Kao, and Hsueh-I Lu. Linear-time succinct encodings of planar graphs via canonical orderings.
SIAM J. Discret. Math., 12(3):317–325, 1999.

40. Arthur B. Kahn. Topological sorting of large networks. Commun. ACM, 5(11):558–562, 1962.
41. Goos Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16(1):4–32, 1996.
42. Donald E. Knuth. The art of computer programming. Vol. 4A. Combinatorial algorithms. Part 1. Addison-Wesley,

2011.

41

https://doi.org/10.1016/j.dam.2017.08.002
https://doi.org/10.1007/s00453-020-00714-6
https://doi.org/10.1016/0166-218X(94)00085-R
https://doi.org/10.37236/1768
https://doi.org/10.1016/S0166-218X(00)00258-4

43. Stephen G. Kobourov. Canonical orders and schnyder realizers. In Encyclopedia of Algorithms, pages 277–283.
Springer, 2016. doi:10.1007/978-1-4939-2864-4_650.

44. Takao Nishizeki and Md. Saidur Rahman. Planar Graph Drawing, volume 12 of Lecture Notes Series on Computing.
World Scientific, 2004.

45. Martin Nöllenburg, Roman Prutkin, and Ignaz Rutter. On self-approaching and increasing-chord drawings of
3-connected planar graphs. J. Comput. Geom., 7(1):47–69, 2016.

46. Akimitsu Ono and Shin-Ichi Nakano. Constant time generation of linear extensions. In Maciej Liskiewicz and
Rüdiger Reischuk, editors, Fundamentals of Computation Theory, 15th International Symposium, FCT 2005,
Lübeck, Germany, August 17-20, 2005, Proceedings, volume 3623 of Lecture Notes in Computer Science, pages
445–453. Springer, 2005. doi:10.1007/11537311_39.

47. Gara Pruesse and Frank Ruskey. Gray codes from antimatroids. Order, 10(3):239–252, 1993.
48. Gara Pruesse and Frank Ruskey. Generating linear extensions fast. SIAM J. Comput., 23(2):373–386, 1994.
49. Pierre Rosenstiehl and Robert Endre Tarjan. Rectilinear planar layouts and bipolar orientations of planar graphs.

Discret. Comput. Geom., 1:343–353, 1986.
50. Frank Ruskey. Combinatorial Generation. University of Victoria, 2003.
51. Marcus Schaefer and Daniel Stefankovic. Decidability of string graphs. J. Comput. Syst. Sci., 68(2):319–334, 2004.
52. Walter Schnyder. Embedding planar graphs on the grid. In David S. Johnson, editor, ACM-SIAM Symposium on

Discrete Algorithms (SODA ’90), pages 138–148. SIAM, 1990.
53. Andry Setiawan and Shin-ichi Nakano. Listing all st-orientations. IEICE Transactions on Fundamentals of

Electronics, Communications and Computer Sciences, 94(10):1965–1970, 2011.
54. Matthew B. Squire. Generating the acyclic orientations of a graph. J. Algorithms, 26(2):275–290, 1998. doi:

10.1006/jagm.1997.0891.
55. Matthew Blaze Squire. Gray Codes and Efficient Generation of Combinatorial Structures. PhD thesis, North

Carolina State University, 1995.
56. George Steiner. An algorithm to generate the ideals of a partial order. Operations Research Letters, 5(6):317–320,

1986. URL: https://www.sciencedirect.com/science/article/pii/0167637786900714, doi:10.1016/0167-6377(86)
90071-4.

57. Roberto Tamassia, editor. Handbook on Graph Drawing and Visualization. Chapman and Hall/CRC, 2013.
58. Kunihiro Wasa. Enumeration of enumeration algorithms. CoRR, abs/1605.05102, 2016.
59. Hassler Whitney. Non-separable and planar graphs. Trans. Am. Math. Soc., 34(2):339–362, 1932. MR:1501641.

Zbl:0004.13103. JFM:58.0608.01. doi:10.2307/1989545.

42

https://doi.org/10.1007/978-1-4939-2864-4_650
https://doi.org/10.1007/11537311_39
https://doi.org/10.1006/jagm.1997.0891
https://doi.org/10.1006/jagm.1997.0891
https://www.sciencedirect.com/science/article/pii/0167637786900714
https://doi.org/10.1016/0167-6377(86)90071-4
https://doi.org/10.1016/0167-6377(86)90071-4
https://doi.org/10.2307/1989545

	Efficient Enumeration of Drawings and Combinatorial Structures for Maximal Planar Graphs

