
On the complexity of list H-packing for sparse graph classes

Tatsuya Gima∗ Tesshu Hanaka† Yasuaki Kobayashi‡ Yota Otachi§

Tomohito Shirai¶ Akira Suzuki¶ Yuma Tamura¶ Xiao Zhou¶

December 15, 2023

Abstract

The problem of packing as many subgraphs isomorphic to H ∈ H as possible in a graph for a class
H of graphs is well studied in the literature. Both vertex-disjoint and edge-disjoint versions are known
to be NP-complete for H that contains at least three vertices and at least three edges, respectively. In
this paper, we consider “list variants” of these problems: Given a graph G, an integer k, and a collection
LH of subgraphs of G isomorphic to some H ∈ H, the goal is to compute k subgraphs in LH that are
pairwise vertex- or edge-disjoint. We show several positive and negative results, focusing on classes of
sparse graphs, such as bounded-degree graphs, planar graphs, and bounded-treewidth graphs.

1 Introduction

Packing as many graphs as possible into another graph is a fundamental problem in the field of graph
algorithms. To be precise, for a fixed graph H, given an undirected graph G and a non-negative integer
k, the Vertex Disjoint H-Packing problem (resp. the Edge Disjoint H-Packing problem) asks for
finding a collection S of k vertex-disjoint (resp. edge-disjoint) subgraphs of G that are isomorphic to H. For a
connected graph H, both problems are polynomially solvable if H has at most two vertices (resp. at most two
edges) because they can be reduced to the Maximum Matching problem, whereas the problems are shown
to be NP-complete if H has at least three vertices (resp. at least three edges) [11, 24]. Furthermore, both
problems are naturally extended to Vertex Disjoint H-Packing and Edge Disjoint H-Packing [10,
24], which respectively ask for finding a collection S of k vertex-disjoint and edge-disjoint subgraphs of G
that are isomorphic to some graph in a (possibly infinite) fixed collection H of graphs. These problems
are also well studied in specific cases of H. In particular, when H is paths or cycles, it has received much
attention in the literature because of the variety of possible applications [4, 5, 8, 25, 27]. In both cases,
Vertex Disjoint H-Packing and Edge Disjoint H-Packing remain NP-complete for planar graphs [5,
13].

Recently, Xu and Zhang proposed a new variant of Edge Disjoint H-Packing, which they call Path
Set Packing, from the perspective of network design [38]. In the Path Set Packing problem, given an
undirected graph G, a non-negative integer k, and a collection L of simple paths in G, we are required to
find a subcollection S ⊆ L of (at least) k paths that are mutually edge-disjoint. Notice that L may not
be exhaustive: Some paths in G may not appear in L. If H consists of a finite number of paths, Edge
Disjoint H-Packing can be (polynomially) reduced to Path Set Packing because H is fixed and hence
all paths in G isomorphic to some graph in H can be enumerated in polynomial time. Xu and Zhang showed
that for a graph G with n vertices and m edges, the optimization variant of Path Set Packing is hard

∗Graduate School of Informatics, Nagoya University, Nagoya, Japan and JSPS Research Fellow. gima@nagoya-u.jp
†Department of Informatics, Kyushu University, Fukuoka, Japan. hanaka@inf.kyushu-u.ac.jp
‡Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, Japan. koba@ist.hokudai.ac.jp
§Graduate School of Informatics, Nagoya University, Nagoya, Japan. otachi@nagoya-u.jp
¶Graduate School of Information Sciences, Tohoku University, Sendai, Japan. {akira,tamura,zhou}@tohoku.ac.jp

1

ar
X

iv
:2

31
2.

08
63

9v
1

 [
cs

.D
S]

 1
4

D
ec

 2
02

3

Table 1: The complexity of Vertex Disjoint Cℓ-Packing (left) and Edge Disjoint Cℓ-Packing (right).
∆(G) = 3 ∆(G) ≥ 4

ℓ = 3 P [9] NPC [9]
ℓ = 4

P [Thm 4] NPC [Thm 6]
ℓ = 5
ℓ ≥ 6 NPC [Thm 5]

∆(G) = 3 ∆(G) = 4 ∆(G) ≥ 5
ℓ = 3 P [9] NPC [9]
ℓ = 4

P [Thm 4] NPC [Thm 7]
ℓ = 5
ℓ ≥ 6 NPC [Thm 5]

to approximate within a factor O(m1/2−ϵ) for any constant ϵ > 0 unless NP = ZPP, while the problem
is solvable in O(|L|n2) time if G is a tree and in O(|L|tw∆n) time if G has treewidth tw and maximum
degree ∆ [38]. Very recently, Aravind and Saxena investigated the parameterized complexity of Path Set
Packing for various parameters. For instance, Path Set Packing is W[1]-hard even when parameterized
by pathwidth plus maximum degree plus solution size [2]. To the best of our knowledge, except for Path
Set Packing, such a variant has not been studied for Edge Disjoint H-Packing, nor Vertex Disjoint
H-Packing.

Our contributions. In this paper, motivated by Path Set Packing, we introduce list variants of Ver-
tex Disjoint H-Packing and Edge Disjoint H-Packing. In the Vertex Disjoint List H-Packing
(resp. Edge Disjoint List H-Packing) problem, we are given a graph G, a non-negative integer k, and
a collection (list) LH of subgraphs of G such that each subgraph in LH is isomorphic to some graph in H.
The problem asks whether there exists a subcollection S ⊆ LH such that |S| ≥ k and subgraphs of G in
S are vertex-disjoint (resp. edge-disjoint). If LH contains all subgraphs of G isomorphic to some graph in
H, the problem is equivalent to Vertex Disjoint H-Packing (resp. Edge Disjoint H-Packing). Thus,
the tractability of the list variants implies that of the original problems. If H = {H} for a fixed graph
H, then we call these problems simply Vertex (Edge) Disjoint List H-Packing and Vertex (Edge)
Disjoint H-Packing, respectively. For a positive integer ℓ, we denote by Pℓ and Cℓ the path and the
cycle of ℓ vertices, respectively. (We assume ℓ ≥ 3 for Cℓ.) When P = {Pℓ : ℓ ≥ 1}, Edge Disjoint List
P-Packing is equivalent to Path Set Packing. Therefore, Edge Disjoint List H-Packing generalizes
both Edge Disjoint H-Packing and Path Set Packing.

We first give sufficient conditions to solve Vertex (Edge) Disjoint List H-Packing on bounded
degree graphs in polynomial time. These conditions directly indicate the polynomial-time solvability of
Vertex (Edge) Disjoint List Cℓ-Packing on graphs of maximum degree 3 for ℓ ∈ {3, 4, 5}. It is worth
noting that Vertex Disjoint P3-Packing remains NP-complete even for 2-connected bipartite planar
cubic graphs [27]. In contrast, we show that Vertex (Edge) Disjoint Cℓ-Packing on planar graphs
of maximum degree 3 is NP-complete for any ℓ ≥ 6. As Vertex (Edge) Disjoint Cℓ-Packing can be
represented by its list variant, this result also indicates the hardness of Vertex (Edge) Disjoint List
Cℓ-Packing. We also give the NP-completeness of Vertex (Edge) Disjoint Cℓ-Packing on planar
graphs of maximum degree 4 for any ℓ ≥ 4. Therefore, we provide the complexity dichotomy of Vertex
(Edge) Disjoint Cℓ-Packing with respect to the maximum degree of a given graph and ℓ, as summarized
in Table 1.

Second, we design a polynomial-time algorithm for Vertex Disjoint List H-Packing on bounded-
treewidth graphs, provided that all graphs in H are connected. This implies that Vertex Disjoint List
H-Packing belongs to XP parameterized by treewidth. Note that the connectivity condition on H is
essential, because otherwise one can see that the problem is NP-complete even on forests (see Theorem 3).
On the other hand, we show that Vertex Disjoint List P-Packing and Vertex Disjoint List C-
Packing parameterized by pathwidth plus k are W[1]-hard, where P = {Pℓ : ℓ ≥ 1} and C = {Cℓ : ℓ ≥ 3}.
This result implies that there is probably no FPT algorithm for the problems parameterized by treewidth.
One might think that XP algorithms parameterized by treewidth could also be designed for the edge-disjoint
versions. We give a negative answer. We show that Edge Disjoint List P-Packing and Edge Disjoint
List C-Packing parameterized by bandwidth plus k are W[1]-hard even for outerplanar and two-terminal
series-parallel graphs, which have treewidth at most 2. In particular, the W[1]-hardness for Edge Disjoint

2

List P-Packing, which is equivalent to Path Set Packing, strengthens the result of [2].
The above hardness results prompt us to further investigate the complexity of Edge Disjoint List

Pℓ-Packing and Edge Disjoint List Cℓ-Packing on bounded-treewidth graphs. In this paper, we focus
on series-parallel graphs, also known as graphs of treewidth at most 2. We show that Edge Disjoint List
P4-Packing and Edge Disjoint List C5-Packing remain NP-complete even for series-parallel graphs.
Since Edge Disjoint List P3-Packing is solvable in polynomial time for general graphs by reducing to
Maximum Matching, the former implies the complexity dichotomy of Edge Disjoint List Pℓ-Packing
on series-parallel graphs with respect to ℓ. The remaining task is to settle the complexity of Edge Disjoint
List Cℓ-Packing on series-parallel graphs for ℓ ≤ 4. We finally provide an algorithm that, given an n-
vertex series-parallel graph and a collection LH of cycles with length ℓ ≤ 4, solves Edge Disjoint List
Cℓ-Packing in O(|LH| + n2.5) time.

Related work. The packing problems have a long history. Vertex Disjoint C-Packing (also known
simply as Cycle Packing) has been studied in numerous papers after the well-known Erdős-Pósa theorem
was given [14]. In particular, Cycle Packing has received a lot of attention in the field of parameterized
complexity. Cycle Packing is fixed-parameter tractable when parameterized by a solution size k [7, 26] or
by treewidth [12]. The complexity of restricted variants of Cycle Packing has also been explored. For any
ℓ ≥ 3, Vertex Disjoint Cℓ-Packing on planar graphs is NP-complete [5]. In addition, Vertex Disjoint
C3-Packing is NP-complete for planar graphs of maximum degree 4 [9], chordal graphs, line graphs, and
total graphs [18], while the problem is solvable in polynomial time for graphs of maximum degree 3 [9], split
graphs, and cographs [18].

In the edge-disjoint variant of Cycle Packing, for any ℓ ≥ 3, Edge Disjoint Cℓ-Packing is NP-
complete for planar graphs [19] and balanced 2-interval graphs [21]. Furthermore, for any even ℓ ≥ 4, Edge
Disjoint Cℓ-Packing on bipartite graphs and balanced 2-track interval graphs is NP-complete [21]. Edge
Disjoint C3-Packing is solvable for graphs of maximum degree 4 [9] and outerplanar graphs [19], while
the problem is NP-complete for planar graphs of maximum degree 5 [9].

As for problems of packing disjoint paths, Vertex Disjoint Pℓ-Packing for any ℓ ≥ 3 is NP-complete
for graphs of maximum degree 3 and Edge Disjoint Pℓ-Packing for any ℓ ≥ 4 is NP-complete for graphs
of maximum degree 4 [28]. Moreover, Vertex Disjoint P3-Packing remains NP-complete even for 2-
connected bipartite planar cubic graphs [27]. On the other hand, for any positive integer ℓ, Vertex Disjoint
Pℓ-Packing is solvable in polynomial time for trees [28]. Vertex Disjoint P2-Packing is equivalent
to Maximum Matching, which is solvable in polynomial time [20]. Vertex Disjoint P3-Packing is
polynomially solvable for certain cases [1, 22], and the problem is in FPT and has a linear kernel when
parameterized by a solution size [16, 33, 37].

Compared to the other packing problems, as far as we know, not much is known about tractable cases of
Edge Disjoint Pℓ-Packing. Edge Disjoint Pℓ-Packing for any positive integer ℓ is solvable in polyno-
mial time for trees [28] and Edge Disjoint P3-Packing is solvable in linear time for general graphs [28].

Vertex (Edge) Disjoint H-Packing is closely related to the Set Packing problem. Given a universe
U , a non-negative integer k, and a collection L of subsets of U , Set Packing asks whether there exists a
subcollection S ⊆ L such that |S| ≥ k and S are mutually disjoint. If H contains all (possibly disconnected)
graphs, then these problems are equivalent because it is possible to construct a graph whose vertices (edges)
correspond to elements of U . If H contains restricted graphs, then Vertex (Edge) Disjoint H-Packing
are special cases of Set Packing. Therefore, all tractable results for Set Packing are applicable to our
problems. This paper further seeks tractable cases of Set Packing from the viewpoint of graph structure.

2 Preliminaries

For a positive integer i, we denote [i] = {1, 2, . . . , i}.
Let G be a graph. Throughout this paper, we assume that G is simple, that is, it has neither self-loops

nor parallel edges. The sets of vertices and edges of G are denoted by V (G) and E(G), respectively. For
v ∈ V (G), we denote by NG(v) the set of neighbor of v, by EG(v) the set of incident edges of v, and by dG(v)

3

the degree of v in G. The maximum degree of a vertex in G is denoted by ∆(G) and the minimum degree of
a vertex in G is denoted by δ(G). We may simply write uv to denote an edge {u, v}. For a positive integer
t, we denote by tG the disjoint union of t copies of G. For a graph H, the H-vertex-conflict graph of G,
denoted IVH(G), is defined as follows. Each vertex of IVH(G) corresponds to a subgraph isomorphic to H in
G. Two vertices of IVH(G) are adjacent if and only if the corresponding subgraphs in G share a vertex. The
H-edge-conflict graph of G, denoted IEH(G), is defined by replacing the adjacency condition in the definition
of IVH(G) as: two vertices of IEH(G) are adjacent if and only if they share an edge in G.

A claw is a star graph with three leaves. A graph is said to be claw-free if it has no claw as an induced
subgraph. Minty [30] and Sbihi [34] showed that the maximum independent set problem can be solved in
polynomial time on claw-free graphs. This immediately implies the following proposition, which is a key to
our polynomial-time algorithms.

Proposition 1. If IVH(G) is claw-free, then Vertex Disjoint List H-Packing can be solved in nO(|V (H)|)

time. Moreover, if IEH(G) is claw-free, then Edge Disjoint List H-Packing can be solved in nO(|V (H)|)

time as well.

A tree decomposition of G is a pair T = (T, {Xi : i ∈ V (T)}) of a tree T and vertex sets {Xi : i ∈ V (T)},
called bags, that satisfies the following conditions:

⋃
i∈V (T) Xi = V (G); for {u, v} ∈ E(G), there is i ∈ V (T)

such that {u, v} ⊆ Xi; and for v ∈ V (T), the bags containing v induces a subtree of T . The width of T
is defined as maxi∈V (T) |Xi| − 1, and the treewidth of G is the minimum integer k such that G has a tree
decomposition of width k. A path decomposition of G is a tree decomposition of G, where T forms a path.
The pathwidth of G is defined analogously. Let π : V (G) → [|V (G)|] be a bijection, which we call a linear
layout of G. The width of a linear layout π of G is defined as max{u,v}∈E(G) |π(u) − π(v)|. The bandwidth
of G is the minimum integer k such that G has a linear layout of width k.

For the treewidth, pathwidth, and bandwidth of G, we denote them by tw(G), pw(G), and bw(G).
We may simply write them as tw, pw, and bw without specific reference to G. It is well known that
tw(G) ≤ pw(G) ≤ bw(G) for every graph G [6].

3 List Cℓ-packing on bounded degree graphs

In this section, we focus on Vertex Disjoint List Cℓ-Packing and Edge Disjoint List Cℓ-Packing
on bounded degree graphs. We give sufficient conditions to solve Vertex (Edge) Disjoint H-Packing
in polynomial time, which extend polynomial-time algorithms for ℓ = 3 [9] to more general cases. We also
show that these conditions are “tight” in some sense.

Theorem 1. Vertex Disjoint List H-Packing can be solved in polynomial time if the following inequality
holds:

∆(G) ≤ 2δ(H) −
⌊
|V (H)|

3

⌋
.

Proof. By Proposition 1, it suffices to show that if IVH(G) has a claw as an induced subgraph, then G has a
vertex of degree more than 2δ(H)−⌊|V (H)|/3⌋. Let H∗, H1, H2, and H3 be induced copies of H in G such
that they correspond to an induced claw in IVH(G) whose center is H∗. This implies that V (H∗)∩V (Hi) ̸= ∅
for 1 ≤ i ≤ 3 and V (Hi) ∩ V (Hj) = ∅ for 1 ≤ i < j ≤ 3. This implies that some copy of H, say H1, satisfies
|V (H∗) ∩ V (H1)| ≤ ⌊|V (H)|/3⌋. Let v ∈ V (H∗) ∩ V (H1). The vertex v has at least δ(H) neighbors in each
of H∗ and H1 and at most ⌊|V (H)|/3⌋ − 1 of them belong to V (H∗) ∩ V (H1). Thus,

dG(v) ≥ 2δ(H) − (|V (H∗) ∩ V (H1)| − 1)

≥ 2δ(H) −
(⌊

|V (H)|
3

⌋
− 1

)
> 2δ(H) −

⌊
|V (H)|

3

⌋
,

4

which proves the claim.

Theorem 2. Edge Disjoint List H-Packing can be solved in polynomial time if the following inequality
holds:

∆(G) ≤ 2δ(H) −
⌊
|E(H)|

3

⌋
,

except that H = tK2 for 3 ≤ t ≤ 5.

Proof. We first assume that |E(H)| ≥ 6. The proof strategy is analogous to that in Theorem 1. Let H∗,
H1, H2, and H3 be induced copies of H in G such that they correspond to an induced claw in IVH(G) whose
center is H∗. We assume that |E(H∗) ∩ E(H1)| ≤ ⌊|E(H)|/3⌋. As E(H∗) ∩ E(H1) ̸= ∅, there are at least
two vertices, say v and w, in V (H∗)∩V (H1). Both v and w have at least δ(H) incident edges in each of H∗

and H1. If v has at most ⌊|E(H)|/3⌋ − 1 incident edges that belong to E(H∗) ∩ E(H1), then we have

dG(v) ≥ 2δ(H) −
(⌊

|E(H)|
3

⌋
− 1

)
> 2δ(H) −

⌊
|E(H)|

3

⌋
.

Suppose otherwise. Then, all the edges in E(H∗) ∩E(H1) are incident to v. This implies that, at most one
edge (i.e., {v, w} if it exists) in E(H∗) ∩ E(H1) can be incident to w. Thus, we have dG(w) ≥ 2δ(H) − 1.
By the assumption |E(H)| ≥ 6, we have dG(w) > 2δ(H) − ⌊|E(H)|/3⌋.

We next consider the other case, that is, |E(H)| ≤ 5, and show that Edge Disjoint List H-Packing
is solvable in polynomial time under the assumption that ∆(G) ≤ 2δ(H)−⌊|E(H)|/3⌋. We can assume that
|E(H)| ≥ 3 as otherwise IEH(G) has no induced claws. If δ(H) ≥ 3, then it has at least four vertices, and
thus we have |E(H)| ≥ |V (H)| · δ(H)/2 ≥ 4δ(H)/2 ≥ 6. Thus, we assume 1 ≤ δ(H) ≤ 2. If δ(H) = 2,
then ∆(G) ≤ 4 − ⌊|E(H)|/3⌋ = 3. In this case, two copies of H appearing in G are edge-disjoint if and
only if they are vertex-disjoint. Moreover, as |E(H)| ≥ |V (H)|, we have ∆(G) ≤ 2δ(H)−⌊|V (H)|/3⌋, yields
a polynomial-time algorithm by Theorem 1. Thus, the remaining case is δ(H) = 1, that is, H = tK2 for
3 ≤ t ≤ 5.

Let us note that the exception in Theorem 2 is critical for the tractability of Edge Disjoint List H-
Packing. In fact, Edge Disjoint List H-Packing is NP-complete even if G = nK2 and H = 3K2, which
satisfy that ∆(G) = 1 ≤ 2δ(H) − ⌊|E(H)|/3⌋. This intractability is shown by reducing Exact Cover by
3-Sets, which is known to be NP-complete [23], to Edge Disjoint List H-Packing. In Exact Cover by
3-Sets, we are given a universe U and a collection C of subsets of U , each of which has exactly three elements
and asked whether there is a pairwise disjoint subcollection C′ of C that covers U (i.e., U =

⋃
S∈C′ S). This

problem is a special case of Edge Disjoint List H-Packing, where G has a copy of K2 corresponding to
each element in U and S consists of all copies of 3K2 corresponding to C. This reduction also proves that
Vertex Disjoint List H-Packing is NP-complete even if G = nK2 and H = 3K2.

Theorem 3. Vertex Disjoint List H-Packing and Edge Disjoint List H-Packing are NP-complete
even if G = nK2 and H = 3K2.

As consequences of Theorems 1 and 2, we have the following positive results.

Theorem 4. For ℓ ∈ {4, 5}, there are polynomial-time algorithms for Vertex Disjoint List Cℓ-Packing
and Edge Disjoint List Cℓ-Packing on graphs of maximum degree 3.

Contrary to this tractability, for any ℓ ≥ 6, Vertex Disjoint Cℓ-Packing and Edge Disjoint Cℓ-
Packing are NP-complete even on planar graphs of maximum degree 3.

Theorem 5. For ℓ ≥ 6, Vertex Disjoint Cℓ-Packing and Edge Disjoint Cℓ-Packing are NP-complete
even on planar graphs of maximum degree 3.

5

v

Cv

u
Cu

P P ′

Figure 1: An example of the construction of G′ for ℓ = 6. Bold lines indicate a matching of each cycle.

Proof. Since Vertex Disjoint Cℓ-Packing and Edge Disjoint Cℓ-Packing are equivalent on graphs of
maximum degree 3, we only consider Vertex Disjoint Cℓ-Packing.

To show NP-hardness, we perform a polynomial-time reduction from Independent Set, which is known
to be NP-complete even on planar graphs with maximum degree 3 and girth at least p for any integer p [31].
Here, the girth of G is the length of a shortest cycle in G.

Let G be a planar graph with ∆(G) ≤ 3 and girth at least ℓ + 1. We construct a graph G′ as follows.
For each v ∈ V (G), G′ contains a cycle Cv of length ℓ. These cycles are called primal cycles in G′. Let Mv

be an arbitrary matching in Cv with |Mv| = 3. For two adjacent vertices u, v in G, we identify one of the
edges in Mu and in Mv as shown in Figure 1. The edges in Mv are called shared edges. By removing the
shared edges from Cv, we obtain three paths, which we call private paths in Cv. Note that each private path
belongs to exactly one primal cycle in G′. The construction of G′ is done. It is easy to observe that G′ is
planar and has maximum degree 3. Also observe that the degree of each internal vertex of a private path is
exactly 2.

We first claim that the length of cycles in G′ except for primal cycles is greater than ℓ. To see this, let
C be an arbitrary cycle that is not a primal cycle in G′. As shared edges form a matching in G′, C must
contain at least one private path P in Cv for some v ∈ V (G). If C contains all the private paths in Cv,
the length of C is greater than ℓ, except for the case C = Cv. Thus, we assume that C does not contain
one of the private paths, say P ′, in Cv. Let W = (v0, v1, . . . , vt) be a sequence of vertices of G defined as
follows. We first contract all shared edges in C. Then, the contracted cycle can be partitioned into maximal
subpaths P0, . . . , Pt such that each Pi consists of edges of (possibly more than one) private paths in Cvi for
some vi ∈ V (G). Due to the maximality of Pi, we have vi ̸= vi+1 for 0 ≤ i ≤ t, where the addition in the
subscript is taken modulo t + 1. Moreover, the sequence contains at least two vertices as C contains P and
does not contain P ′, meaning that it must have a private path in Cv′ for some v′ ̸= v. For any pair of private
paths in Cu and in Cw, they are adjacent with a shared edge if and only if u and w are adjacent in G. Thus,
W is a closed walk in G.

Suppose that W contains a “turn”, that is, vi = vi+2 for some i. This implies that C contains all private
paths of Cvi+1

, which implies that the length of C is more than ℓ. Otherwise, W contains a cycle in G. Since
the girth of G is at least ℓ + 1, W has more than ℓ edges. Hence, C contains more than ℓ + 1 private paths.

Now, we are ready to prove that G has an independent set of size at least k if and only if G′ has a
Cℓ-packing of size at least k. From an independent set of G, we can construct a vertex-disjoint Cℓ-packing
by just taking primal cycles corresponding to vertices in the independent set. Since every cycle except for
primal cycles has length more than ℓ, this correspondence is reversible: From a vertex-disjoint Cℓ-packing
of G′ with size k, we can construct an independent set of G with size k.

Using a similar strategy of Theorem 5, we prove the following theorems.

Theorem 6. For ℓ ∈ {4, 5}, Vertex Disjoint Cℓ-Packing is NP-complete even on planar graphs of
maximum degree 4.

Proof. We again give a polynomial-time reduction from Independent Set on planar graph with maximum
degree at most 3 and girth at least ℓ + 1. Let G be a planar graph with maximum degree 3 and girth at
least ℓ + 1. We construct a graph G′ such that G has an independent set of size k if and only if G′ has k
vertex-disjoint Cℓ’s. The construction is almost analogous to one used in Theorem 5. For each v ∈ V (H), G′

6

v

u

G

Cv

Cu

G′

Figure 2: An example of the construction of G′ for ℓ = 4.

v

u

v

u

Cv

Cu

G G′
Ĝ

Figure 3: An example of the constructions of H ′ and G for ℓ = 4. Bold lines depict shared edges.

contains a cycle Cv of length ℓ. These cycles are called primal cycles in G′. We take arbitrary three vertices
of Cv, which are called shared vertices. For two adjacent vertices u, v in G, we identify one of the shared
vertices in Cu and in Cv as shown in Figure 2. It is easy to see that the constructed graph G′ is planar and
has degree at most 4.

Let C be a cycle of G′ that is not a primal cycle. Since each primal cycle has only three shared vertices,
C passes through a primal cycle at most once, where we say that C passes through a primal cycle Cv when
C contains at least one edge of Cv. This fact implies that C induces a cycle of G by tracing C as in the
proof of Theorem 5. Thus, we can conclude that C has more than ℓ edges.

The remaining part of the proof is identical to that in Theorem 5. For every independent set S of G, the
primal cycles of them are vertex-disjoint Cℓ’s in G and vice versa.

Theorem 7. For ℓ ∈ {4, 5}, Edge Disjoint Cℓ-Packing is NP-complete even on planar graphs of maxi-
mum degree 4.

Proof. The proof is done by showing a polynomial-time reduction from Independent Set on planar graphs
with maximum degree 3. Let G be a planar graph with maximum degree 3. We construct a planar graph
Ĝ with maximum degree at most 4 such that G has an independent set of size k if and only if Ĝ has k′

edge-disjoint Cℓ’s for some k′. The construction is done in the same spirit of Theorems 5 and 6 but we need
to make a minor modification to keep the upper bound on its degree. We first subdivide each edge of G
twice. The subdivided graph is denoted by G′. It is well known that G has an independent set of size k if
and only if G′ has an independent set of size k + |E(G)| [32]. For each vertex v ∈ V (G′), Ĝ contains a cycle
of length ℓ, which we call a primal cycle of v. For such a cycle Cv, we take arbitrary three edges if the degree
of v is 3 in G′, and take a matching with two edges otherwise. These edges are called shared edges. We then
identify one of shared edges in Cu and that in Cv if they are adjacent in G′. See Figure 3 for an illustration.
It is easy to see that Ĝ is planar. As G′ has no pair of adjacent vertices of degree 3, for each vertex in Ĝ,
there are at most two shared edges and at most two non-shared edges incident to it, which implies that the
maximum degree of Ĝ is at most 4.

Now, we show that G′ has an independent set of size k′ if and only if Ĝ has k′ edge-disjoint Cℓ’s. This can
be shown by observing that every cycle of Ĝ has more than ℓ edges except for primal cycles. The remaining
part of the proof is analogous to ones in Theorems 5 and 6.

7

4 Vertex Disjoint List H-Packing on bounded-treewidth graphs

In Section 5, we will see that Edge Disjoint List H-Packing is intractable even if H contains a sin-
gle small connected graph and an input graph is series-parallel. In contrast to this intractability, Ver-
tex Disjoint List H-Packing is polynomial-time solvable on series-parallel graphs and, more generally,
bounded-treewidth graphs, if H consists of a finite number of connected graphs. More precisely, we show
that Vertex Disjoint List H-Packing is XP parameterized by treewidth, provided that H consists of
connected graphs. We also show that Vertex Disjoint List P-Packing and Vertex Disjoint List
C-Packing are W[1]-hard parameterized by pathwidth. (Recall that P = {Pℓ : ℓ ≥ 1} and C = {Cℓ : ℓ ≥ 3}.)

Theorem 8. Vertex Disjoint List H-Packing is solvable in nO(tw) time, provided that all graphs in H
are connected, where n is the number of vertices in the input graph.

We only sketch the proof of Theorem 8 by giving a rough idea of a dynamic programming algorithm
based on tree decompositions. (A similar idea is used in [35] for instance.) Let G be a graph with n vertices.
We can find a tree decomposition T = (T, {Xi : i ∈ V (T)}) of G of width tw(G) in time nO(tw) using the
algorithm of [3]. By taking an arbitrary node of T , we assume that T is rooted. For each bag Xi of T , we
denote by Gi the subgraph of G induced by the vertices contained in Xi or descendant bags of Xi.

Let LH be a collection of connected subgraphs of G, each of which is isomorphic to some graph in H.
For i ∈ V (T), a partial H-packing of Gi is a vertex-disjoint subcollection S of LH, each of which contains
at least one vertex of Gi. A subgraph in a partial H-packing is said to be active if it has at least one vertex
in V (G) \ V (Gi). A key observation to our dynamic programming algorithm is that each active subgraph in
any partial H-packing contains at least one vertex of Xi. This follows from the fact that every graph in LH
is connected. This implies that there are at most |Xi| active subgraphs in any partial H-packing of Gi.

To be slightly more precise, we define opt(i, Ŝ) as the maximum cardinality of a partial H-packing S such
that Ŝ ⊆ S is the set of active subgraphs in it. By a standard argument in dynamic programming over tree
decompositions, we can compute opt(i, Ŝ) in a bottom-up manner. The total running time of computing all
possible opt(i, Ŝ) for i and Ŝ is upper bounded by |LH|O(tw)n = nO(tw).

We would like to note that the connectivity of H is crucial as we have seen in Section 3 that Vertex
Disjoint List H-packing is NP-complete even if G = nK2 and H = 3K2.

The following theorems complement the positive result of Theorem 8.

Theorem 9. Vertex Disjoint List P-Packing is W[1]-hard parameterized by pw + k.

Proof. The proof is done by showing a parameterized reduction from Multicolored Independent Set,
which is known to be W[1]-complete [12, 15]. In Multicolored Independent Set, we are given a graph
G with a partition of vertex set V (G) = V1 ∪ V2 ∪ · · · ∪ Vt and asked whether G has an independent set S of
size t that contains exactly one vertex from Vi for each 1 ≤ i ≤ t.

From an instance of Multicolored Independent Set G with V (G) = V1 ∪ · · · ∪ Vt, we construct a
graph G′ as follows. Let m = |E(G)|. The vertex set of G′ consists of m + 1 vertex sets V ′

0 ∪ V ′
1 ∪ · · · ∪ V ′

m,
where each set V ′

i with i ≥ 1 is associated with an edge ei of G. The vertex set V ′
0 contains t vertices

v1, . . . , vt and other sets V ′
i for i ≥ 1 contain t + 1 vertices vi,1, . . . , vi,t, wi. For 1 ≤ i ≤ m, we add an

edge between every pair of vertices v ∈ Vi−1 and v′ ∈ Vi. The graph obtained in this way is denoted by
G′. Observe that the pathwidth of G′ is at most 2t + 1. This can be seen by observing that G′ has a path
decomposition consisting of bags Xi := V ′

i−1 ∪ V ′
i for 1 ≤ i < m, which has width at most 2t + 1. For each

vertex v ∈ Vi, we define a path Pv in G′ that consists of (1) vi and (2) for all 1 ≤ j ≤ m, vi,j if ej is not
incident to v and wi otherwise. As Pv contains exactly one vertex from each V ′

i , Pv forms a path in G′.
See Figure 4 for an illustration. Let LH = {Pv : v ∈ V (G)}. Now, we claim that G has an independent set
S that contains exactly one vertex from each Vi if and only if there is a Pm+1-packing S ⊆ LH with |S| ≥ t
in G′.

Suppose that G has an independent set S with |S ∩ Vi| = 1 for 1 ≤ i ≤ t. Let S = {Pv : v ∈ S}. For
distinct paths Pv, Pv′ ∈ S with v ∈ Vi and v′ ∈ Vi′ , suppose that they share a vertex u. As i ̸= i′, the vertex
u is contained in some Vj as u = wj . This implies that v is adjacent to v′, contradicting to the fact that S
is an independent set of G.

8

v1

v2

v3

v4

v5

v1,m

v2,m

v3,m

v4,m

v5,m

wm

v1,2

v2,2

v3,2

v4,2

v5,2

w2w1

v1,1

v2,1

v5,1

v4,1

v3,1 · · ·

Figure 4: The figure illustrates the graph G′. The red thick lines indicate the edges of path Pv for v ∈ V3.
The edge e1 is not incident to v but e2 is incident to v.

For the converse direction, suppose that there is a Pm+1-packing S ⊆ LH with |S| ≥ t in G′. Let
S = {v ∈ V (G) : Pv ∈ S}. Since each subgraph contains exactly one vertex from V0, we have |S| = t.
Moreover, S contains exactly one vertex from each Vi. If there are two vertices in S that are adjacent (by an
edge ej) to each other, the corresponding paths in S share the vertex wj in Vj . Hence, S is an independent
set of G.

Theorem 10. Vertex Disjoint List C-Packing is W[1]-hard parameterized by pw + k.

Proof. This proof is done by modifying the instance constructed in the proof of Theorem 9. For the graph
G′, we additionally give an edge between every pair of vertices v ∈ V ′

0 and v′ ∈ ∪V ′
m. Observe that there

exists a path decomposition consisting of bags Xi := V ′
i−1 ∪V ′

i ∪V ′
m for 1 ≤ i < m, which has width at most

3t + 2. For each vertex v ∈ Vi, we define a cycle Cv in G′ that consists of (1) vi and (2) for all 1 ≤ j ≤ m,
vi,j if ej is not incident to v and wi otherwise. The remaining part of the proof is identical to that in
Theorem 9.

5 Edge Disjoint List H-Packing on series-parallel graphs

This section is devoted to showing several positive and negative results on series-parallel graphs. The class
of series-parallel graphs is a well-studied class of graphs and is equivalent to the class of graphs of treewidth
at most 2.

A two-terminal labeled graph is a graph G with distinguished two vertices called a source s and a sink t.
Let G1 = (V1, E1) (resp. G2 = (V2, E2)) be a two-terminal labeled graph with a source s1 and a sink t1 (resp.
a source s2 and a sink t2). A series composition of G1 and G2 is an operation that produces the two-terminal
labeled graph with a source s and a sink t obtained from G1 and G2 by identifying t1 and s2, where s = s1
and t = t2. A parallel composition of G1 and G2 is an operation that produces the two-terminal labeled
graph with a source s and a sink t obtained from G1 and G2 by identifying s1 and s2, and identifying t1 and
t2, where s = s1(= s2) and t = t1(= t2). We denote G = G1 •G2 if G is created by a series composition of
G1 and G2, and denote G = G1 ∥ G2 if G is created by a parallel composition of G1 and G2. We say that
a two-terminal labeled graph G is a two-terminal series-parallel graph if one of the following conditions is
satisfied: (i) G = K2 with a source s and a sink t; (ii) G = G1 • G2 for two-terminal series-parallel graphs
G1 and G2; or (iii) G = G1 ∥ G2 for two-terminal series-parallel graphs G1 and G2.

We say that a graph G (without a source and a sink) is a series-parallel graph if each biconnected
component is a two-terminal series-parallel graph by regarding some two vertices as a source and a sink1.

5.1 Hardness

A graph G is outerplanar if it has a planar embedding such that every vertex of G meets the unbounded face
of the embedding. Every outerplanar graph is series-parallel but may not be two-terminal series-parallel.

1Some papers refer to a two-terminal series-parallel graph simply as a series-parallel graph. In this paper, we distinguish
them explicitly to avoid confusion.

9

The following two theorems indicate that Edge Disjoint List H-Packing remains intractable even when
a given graph is highly restricted.

Theorem 11. Edge Disjoint List P-Packing parameterized by bw(G) + k is W[1]-hard even for outer-
planar and two-terminal series-parallel graphs, where k is a solution size.

We prove Theorem 11 by giving a parameterized reduction from Multicolored Independent Set
to Edge Disjoint List P-Packing. Recall that, in Multicolored Independent Set, we are given a
graph G′ with a partition of its vertex set V (G′) = V1 ∪V2 ∪ · · · ∪Vt. We may assume that Vi forms a clique
of G′.

u0
1 u1

1 u2
1 u3

1 u4
1 u5

1 u6
1 u7

1 u0
2 u1

2 u2
2 u3

2 u4
2 u5

2 u6
2 u7

2 u0
3 u1

3

· · ·
u7
m′ u0

m′+1

Figure 5: The figure partially illustrates the graph G for t = 3. The edges in E1
1 , in E2

1 , and in E3
1 are

depicted as green segments, red segments, and blue segments, respectively.

From an instance of Multicolored Independent Set, we construct an instance (G, t,LH) of Edge
Disjoint List P-Packing. To this end, we construct a gadget Gi for each i ∈ [m′], where m′ = |E(G′)|.
(See also Figure 5.) The vertex set of Gi = (Wi, Ei) is defined as Wi = {uj

i : j ∈ [2t] ∪ {0}}. For

j ∈ [t] ∪ {0} and p ∈ [2j] ∪ {0}, let denote λ(j, p) = 2t−jp. Then we define Ej
i = {uλ(j,p−1)

i u
λ(j,p)
i : p ∈ [2j]}.

In other words, Ej
i consists of all edges in the path starting from u0

i to uq
i with q = 2t that contains

ur
i for r = 2t−j , 2 · 2t−j , 3 · 2t−j , . . . , (2j − 1)2t−j as internal vertices. We define the edge set of Gi as

Ei =
⋃

j∈[t]∪{0} E
j
i . After constructing G1, . . . , Gm′ , we concatenate the graphs by identifying uq

i of Gi and

u0
i+1 of Gi+1 for every i ∈ [m′ − 1]. For notational convenience, we relabel a vertex uq

i as u0
i+1 for every

i ∈ [m′]. We define the graph constructed above as G.
Next, we construct a collection LH of paths in G. Suppose that E(G′) = {e1, e2, . . . , em′}. For each

v ∈ V (G′), a path Pv of G is defined as follows. Suppose that v ∈ Vj . The path Pv starts at u0
1 and ends at

u0
m′+1. For each i ∈ [m′], Pv passes through u0

iu
0
i+1 if ei is incident to v; otherwise, Pv passes through all

edges in Ej
i . For example, consider t = 3 and a vertex v ∈ V2 such that only edges e1, e4 are incident to v.

Then,

Pv = (u0
1, u

0
2, u

2
2, u

4
2, u

6
2, u

0
3, u

2
3, u

4
3, u

6
3, u

0
4, u

0
5, u

2
5, . . . , u

6
m′ , u0

m′+1).

We define LH = {Pv : v ∈ V (G′)}. This completes the construction of the instance (G, t,LH). Let denote
n = |V (G)| and m = |E(G)|.

Observe that G is an outerplanar graph and a two-terminal series-parallel graph. For n′ = |V (G′)| and
m′ = |E(G′)|, we have n = 2tm′+1, m = (2t+1−1)m′, and |LH| = n′. Thus, the construction of (G, k,LH) is
completed in O(2tn′m′) time. Moreover, bw(G) ≤ 2t holds: consider the linear layout π(uj

i) = 2t(i−1)+j+1
for i ∈ [m′] and j ∈ [2t − 1] ∪ {0}, which is the same as the ordering of the vertices depicted in Figure 5.
The following lemma completes the proof of Theorem 11.

Lemma 1. The instance (G′, t, {V1, V2, . . . , Vt}) of Multicolored Independent Set is a yes-instance
if and only if the instance (G, t,LH) of Edge Disjoint List P-Packing is a yes-instance.

Proof. We first prove the necessity. For a solution S of a yes-instance (G, t,LH) of Edge Disjoint List
P-Packing, let I = {v ∈ V (G′) : Pv ∈ S}. Since S are mutually edge-disjoint on G, at most one path in S
passes through u0

iu
0
i+1 for each i ∈ [m′]. This implies that at most one of the endpoints of ei ∈ E(G′) is in I,

that is, I is an independent set of G′. Moreover, we have |I| ≥ t. Since Vj is a clique of G′, |Vj ∩ I| = 1 holds
for every j ∈ [t]. Thus, (G′, t, {V1, V2, . . . , Vt}) is a yes-instance of Multicolored Independent Set.

10

We next prove the sufficiency. For a solution I ⊆ V (G′) of a yes-instance (G′, t, {V1, V2, . . . , Vt}) of
Multicolored Independent Set, let S = {Pv : v ∈ I}. Since |S| = t, it suffices to show that S is
mutually edge-disjoint. Let u, v ∈ I. Suppose that u ∈ Vj and v ∈ Vj′ . Since |Vj ∩ I| = 1 for every j ∈ [t],
j ̸= j′ holds. For paths Pu, Pv ∈ S corresponding to u, v ∈ I and i ∈ [m′], we denote by Pu,i and Pv,i, the
subpaths of Pu and Pv that start at u0

i and end at u0
i+1, respectively. In the remainder of this proof, we

show that Pu,i and Pv,i are edge-disjoint for every i ∈ [m′], meaning that Pu and Pv are also edge-disjoint.

Suppose that ei is incident to neither u nor v. Then, it holds that E(Pu,i) = Ej
i and E(Pv,i) = Ej′

i . Since

j ̸= j′, we have Ej
i ∩ Ej

i = ∅. Suppose otherwise that ei is incident to u or v, say u. This implies that ei

is not incident to v as u, v ∈ I. Therefore, we have E(Pu) = E0
i and E(Pv,i) = Ej′

i . Since j′ ∈ [t], Pu,i and
Pv,i are edge-disjoint.

By a similar proof, we can show the W[1]-hardness of Edge Disjoint List C-Packing.

Theorem 12. Edge Disjoint List C-Packing parameterized by bw(G) + k is W[1]-hard even for outer-
planar and two-terminal series-parallel graphs, where k is a solution size.

Proof. We reuse the instance (G, k,LH) of Edge Disjoint List P-Packing from the proof of Theorem 11,
which is constructed from the instance (G′, t, {V1, V2, . . . , Vt}) of Multicolored Independent Set. Let
Gc denote the graph obtained by identifying u0

1 and u0
m+1 of G. Observe that Gc is outerplanar and two-

terminal series-parallel. Moreover, this identification produces a collection Lc
H of cycles of Gc from LH,

because every path in LH starts at u0
1 and ends at u0

m+1. As in the proof of Lemma 1, we can show that the
instance (G′, t, {V1, V2, . . . , Vt}) of Multicolored Independent Set is a yes-instance if and only if the
instance (Gc, k,Lc

H) of Edge Disjoint List C-Packing is a yes-instance.

In the remainder of this proof, we show that bw(Gc) ≤ 3 ·2t. For each i ∈ [m′], let πi = ⟨u0
i , u

1
i , . . . , u

q−1
i ⟩,

where q = 2t. In addition, we define a permutation ρ of [m′] as follows:

ρ(i) =

{
i+1
2 if i is odd,

m′ + 1 − i
2 otherwise.

Consider an ordering π = ⟨πρ(1), πρ(2), . . . , πρ(m′)⟩. Recall that Wi = {uj
i : j ∈ [2t] ∪ {0}} and u2t

i = u0
i+1 for

the gadget Gi. From the construction of Gc, every vertex in Wi for i ∈ [m′] is adjacent to only vertices in
Wi−1 ∪Wi ∪Wi+1, where we consider Wm′ = W0 and W1 = Wm′+1. Thus, for every vertex u in πρ(i), each
adjacent vertex of u appears between πρ(i−2) and πρ(i+2). Since πρ(i) has 2t vertices, the bandwidth of π is
bounded by 3 · 2t, that is, bw(Gc) ≤ 3 · 2t. This completes the proof of Theorem 12.

We next focus on the case where H consists of a single graph and show that the problem remains hard.
Let K2,n denotes the complete bipartite graph such that one side consists of two vertices and the other side
consists of n vertices.

Theorem 13. Edge Disjoint List P4-packing remains NP-complete even for the class of K2,n.

Observe that K2,n is a two-terminal series-parallel graph. Since Edge Disjoint List P3-packing is
solvable for general graphs, Theorem 13 suggests that the complexity dichotomy with respect to path length
still holds for very restricted graphs. Moreover, Theorem 13 immediately provides the following corollary,
which strengthens the hardness result in [2] that Path Set Packing is W[1]-hard when parameterized by
vertex cover number of G plus maximum length of paths in a given collection L.

Corollary 1. Path Set Packing is NP-complete even when a given graph has vertex cover number 2 and
every path in L is of length 3.

To prove Theorem 13, we perform a polynomial-time reduction from Independent Set on cubic graphs,
that is, graphs such that every vertex has degree exactly 3. Independent Set on cubic graphs is known to
be NP-complete [17].

11

For a cubic graph G′, we construct vertex sets X = {xu, x
′
u : u ∈ V (G′)}, Y = {yu,e, yv,e : e = uv ∈

E(G′)}, and Z = {ze : e ∈ E(G′)}. A graph G consists of a vertex set X ∪ Y ∪ Z ∪ {s, t} such that
X ∪Y ∪Z forms an independent of G and every vertex in X ∪Y ∪Z is adjacent to both s and t. Obviously,
G = K2,2n′+3m′ .

We next construct a collection LH of paths in G as follows:

• for u ∈ V (G′), let PX
u = ⟨s, xu, t, x

′
u⟩;

• for u ∈ V (G′) with three incident edges e, f, g ∈ EG′(u), let

PY
u,e = ⟨s, yu,e, t, x′

u⟩,
PY
u,f = ⟨s, yu,f , t, xu⟩,

PY
u,g = ⟨xu, s, yu,g, t⟩;

• for e = uv ∈ E(G′), let PZ
u,e = ⟨yu,e, s, ze, t⟩ and PZ

v,e = ⟨yv,e, s, ze, t⟩.

Then, we define

LH = {PX
u : u ∈ V (G′)} ∪ {PY

u,e : u ∈ V (G′), e ∈ EG′(u)} ∪ {PZ
u,e, P

Z
v,e : e = uv ∈ E(G′)}

and k = k′ +2m′. Clearly, the construction of the instance (G, k,LH) for Edge Disjoint List P4-packing
is completed in polynomial time. Our remaining task is to prove the following lemma.

Lemma 2. An instance (G′, k′) of Independent Set is a yes-instance if and only if an instance (G, k,LH)
of Edge Disjoint List P4-packing is a yes-instance.

Proof. We first show the forward implication. For an independent set I with |I| ≥ k′, we construct a
subcollection S ⊆ LH as follows:

S = {PX
u : u ∈ I} ∪ {PZ

u,e : u ∈ I, e ∈ EG′(u)} ∪ {PY
u,e : u /∈ I, e ∈ EG′(u)}.

Observe that |S| ≥ k′ + 3n′. Since G′ is a cubic graph, we have 3n′ = 2m′ by the handshaking lemma,
and hence |S| ≥ k′ + 2m′ = k. We claim that S is mutually edge-disjoint. Assume for a contradiction that
there are two paths P and P ′ in S that have a common edge. There are three cases to consider: (i) P = PX

u

for some u ∈ V (G′); (ii) P = PY
u,e for some u ∈ V (G′) and e ∈ EG′(u); and (iii) P = PZ

u,e and P ′ = PZ
v,f for

some u, v ∈ V (G′), e ∈ EG′(u), and f ∈ EG′(v).
In the case (i), from the construction of LH, we have P ′ = PY

u,e for some e ∈ EG′(u). As PX
u ∈ S, we

have u ∈ I but as PY
u,e ∈ S, we have u /∈ I, a contradiction. Consider the case (ii). Only PX

u and PZ
u,e can

share an edge with PY
u,e, and thus we consider the latter case: P ′ = PZ

u,e. This implies that u ∈ I, while

PY
u,e ∈ S also implies u /∈ I, a contradiction. In the case (iii), one can observe that e = f = uv. Then, we

have u, v ∈ I, a contradiction. Therefore, S is a solution for (G, k,LH).
We next show the backward implication. Let S be a subcollection of LH such that S is mutually edge-

disjoint and |S| ≥ k = k′ + 2m′. Suppose that S contains both PX
u and PX

v with e = uv ∈ E(G′). As they
share edges with PY

u,e and PY
v,e, we have PY

u,e, P
Y
v,e /∈ S. Furthermore, at least one of PZ

u,e and PZ
v,e is not

contained in S. We then remove PX
u from S and add PY

u,e into S if PZ
u,e /∈ S; otherwise, we remove PX

v from

S and add PY
v,e into S. This exchange keeps S mutually edge-disjoint because PY

u,e (resp. PY
v,e) shares edges

only with PX
u (resp. PX

v) in S. Hence, we may assume that S contains at most one of PX
u and PX

v for every
uv ∈ E(G′). Let denote Pe = {PY

u,e, P
Z
u,e, P

Y
v,e, P

Z
v,e} for e = uv ∈ E(G′). Observe that |Pe∩S| ≤ 2 due to the

construction of LH. Thus, |
⋃

e∈E(G′) Pe∩S| ≤ 2m′. This implies that |{PX
u : u ∈ V (G′)}∩S| ≥ k−2m′ = k′.

Let I = {u ∈ V (G′) : PX
u ∈ S}. From the assumption of S, I is an independent set of G′. This completes

the proof of the lemma.

We also show the complexity of Edge Disjoint List C5-packing, which highlights the positive result
in Section 5.2.

12

xusXu tXu

xu,e xu,f

xu,g x′
u,g

Figure 6: The gadget GX
u for u ∈ V (G′) with three incident edges e, f, g ∈ EG′(u).

Theorem 14. Edge Disjoint List C5-packing remains NP-complete even for two-terminal series-parallel
graphs.

We again perform a polynomial-time reduction from Independent Set on cubic graphs. For a cubic
graph G′, we use a gadget GX

u depicted in Figure 6 for each u ∈ V (G′). The gadget GX
u consists of seven

vertices sXu , tXu , xu, xu,e, xu,f , xu,g, and x′
u,g, where e, f, g ∈ EG′(u). Observe that GX

u is a two-terminal

series-parallel graph with a source sXu and a sink tXu . For each pair u ∈ E(G′) and e ∈ EG′(u), we prepare
an additional two-terminal series-parallel graph GY

u,e consisting of a path ⟨sYu,e, yu,e, tYu,e⟩, where sYu,e and tYu,e
are a source and a sink of GY

u,e, respectively. Moreover, for each e ∈ E(G′), we construct a two-terminal

series-parallel graph GZ
e consisting of a path ⟨sZe , ze, z′e, tZe ⟩, where sZe and tZe are a source and a sink of

GZ
e , respectively. We denote by GX a graph obtained by parallel compositions of the all gadgets GX

u for
u ∈ V (G′). The graph GY and GZ are similarly defined as parallel compositions of the gadgets. We then
let G = GX ∥ GY ∥ GZ . Observe that G is also a two-terminal series-parallel graph. Let s and t denote the
source and the sink of G, respectively.

We next construct a collection LH of cycles in G as follows:

• for u ∈ V (G′), let CX
u = ⟨s, xu, t, x

′
u,g, xu,g, s⟩, where g ∈ EG′(u);

• for u ∈ V (G′) with three incident edges e, f, g ∈ EG′(u), let

CY
u,e = ⟨s, xu,e, xu, t, yu,e, s⟩,

CY
u,f = ⟨s, xu, xu,f , t, yu,f , s⟩,

CY
u,g = ⟨s, xu,g, x

′
u,g, t, yu,g, s⟩;

• for e = uv ∈ E(G′), let CZ
u,e = ⟨s, yu,e, t, z′e, ze, s⟩ and CZ

v,e = ⟨s, yv,e, t, z′e, ze, s⟩.

Then, we define

LH = {CX
u : u ∈ V (G′)} ∪ {CY

u,e : u ∈ V (G′), e ∈ EG′(u)} ∪ {CZ
u,e, C

Z
v,e : e = uv ∈ E(G′)}

and k = k′ + 2m′, where m′ = |E(G′)|. The construction of the instance (G, k,LH) for Edge Disjoint
List C5-packing takes in polynomial time. From a vertex set I of G′, we can construct a set

S = {CX
u : u ∈ I} ∪ {CZ

u,e : u ∈ I, e ∈ EG′(u)} ∪ {CY
u,e : u /∈ I, e ∈ EG′(u)}

of cycles in LH. Analogous to Lemma 2, we can prove that I is an independent set of G′ if and only if cycles
in S are edge-disjoint, which is omitted because, in fact, it is essentially the same as the proof of Lemma 2.

13

e1 e2

e3 e4

e5 e6 e7

∥
∥ •

• • e5 •

e1 e2 e3 e4 e6 e7

∥

• • •

e1 e2 e3 e4 e5 e6 e7

(a) (b) (c)

Figure 7: (a) The graph G, (b) the decomposition tree of G, and (c) the layered decomposition tree of G.

5.2 Polynomial-time algorithm of Edge Disjoint List Cℓ-packing for ℓ ≤ 4

We design a polynomial-time algorithm for Edge Disjoint List Cℓ-packing for ℓ ≤ 4 on two-terminal
series-parallel graphs. Actually, we give a stronger theorem.

Theorem 15. Let C≤4 = {C3, C4}. Given a series-parallel graph G with n vertices and a collection LH of
cycles in G of length at most 4, Edge Disjoint List C≤4-packing is solvable in O(|LH| + n2.5) time.

We first note that we may assume that a given graph G is biconnected: the problem can be solved
independently in each biconnected component. Moreover, from the definition of series-parallel graphs, every
biconnected series-parallel graph can be regarded as a two-terminal series-parallel graph. We thus consider
a polynomial-time algorithm that finds a largest solution of a given two-terminal series-parallel graph.

The recursive definition of a two-terminal series-parallel graph G naturally gives us a rooted full binary
tree T representing G, called the decomposition tree of G (see Figure 7(a) and (b)). To avoid confusion, we
refer to a vertex and an edge of T as a node and a link, respectively. For a node x of T , let Tx be a subtree
of T rooted at x. Each leaf of T corresponds to an edge of G whose endpoints are labeled with a source s
and a sink t. Each internal node x of T is labeled either • or ∥. Suppose that x has exactly two children x1

and x2. The label • indicates a series composition of two-terminal series-parallel graphs defined by Tx1 and
Tx2

. The label ∥ indicates a parallel composition of two-terminal series-parallel graphs defined by Tx1
and

Tx2
. We refer to nodes labeled • as •-nodes and to nodes labeled ∥ as ∥-nodes. We denote by Gx the graph

composed by Tx. Let r be the root of T . Then, we have Gr = G. Note that, since G1 • G2 and G2 • G1

produce different two-terminal graphs, we assume that children of a •-node are ordered. In addition, since
we have assumed G is 2-connected, the root r of T is labeled ∥ (assuming G has at least three vertices).

At the beginning of our algorithm, we construct a decomposition tree T ′ of a given graph G in linear
time [36], and then transform it into a suitable form for our algorithm as follows (see also Figure 7(c)).
If a •-node x of T ′ has a child •-node x′, then we contract a link xx′ without changing the order of
series compositions. For example, suppose that x has children x1 and x′; x′ has children x2 and x3; and
Gx = Gx1 • Gx′ . Then, we contract the link xx′ so that Gx = G1 • G2 • G3. The contracted tree still tells
how to construct G. Similarly, if a ∥-node x of T ′ has a child ∥-node x′, then we contract the link xx′.
We iteratively contract such links until each •-node has only leaves or ∥-nodes as its children, and ∥-node
has only leaves or •-nodes as its children. Note that each ∥-node has at most one leaf of T ′ as its children
because G has no multiple edges. The tree obtained in this way is called a layered decomposition tree of G
and is denoted by T .

Let C be a cycle of a graph G = (V,E). For a subgraph G′ = (V ′, E′) of G, we say that C enters G′

if C has both an edge in E′ and an edge in E \ E′. Suppose that there is a •-node x of T such that x has
c ≥ 4 children x1, x2, . . . , xc. Then, no cycle of length at most 4 enters Gx; since Gx is created by series
compositions of at least four two-terminal labeled graphs, every cycle entering Gx has length at least 5.
Thus, the problem can be solved independently in each of Gx and the remaining part.

Assume that each •-node x of T has at most three children. Before explaining dynamic programming
over T , we give the following key lemma.

14

Lemma 3. Let x be any node of a layered decomposition tree T of a two-terminal series-parallel graph G
and LH be a collection of cycles in G of length at most 4. For any solution S ⊆ LH of G, there exists at
most one cycle in S that enters Gx.

Proof. If x is a leaf or the root of T , the lemma trivially holds. Suppose otherwise, and assume for a
contradiction that there exist two edge-disjoint cycles C,C ′ ∈ S that enter Gx.

Suppose that x is a •-node. Recall that x has two or three children. Suppose that x has exactly two
children y and z, that is, Gx = Gy •Gz. We denote by sy and ty the source and the sink of Gy, respectively,
and by sz and tz analogously. Observe that each of C and C ′ contains at least one edge from Gy and at
least one edge from Gz. Moreover, they have at least one edge outside of Gx, implying that they have at
most three edges in Gx. As C contains at most three edges in Gx, without loss of generality, we assume that
C contains exactly one edge (i.e., syty) of Gy. As G has no parallel edges and the cycles are edge-disjoint,
C ′ contains exactly two edges of Gy. Similarly, C contains exactly two edges of Gz and C ′ contains exactly
one edge of Gz. Thus, both cycles contain exactly three edges of Gx. This implies that C and C ′ contain
the edge sytz as they have at most four edges, contradicting the fact that G has no parallel edges. We can
derive a similar contradiction for the case where x has three children.

Next, suppose that x is a ∥-node. Let x′ be the parent of x. From the definition of a layered decomposition
tree, x′ is a •-node. As C enters Gx, C passes through (1) an edge of Gy, (2) one of the source or sink of
Gx, and (3) an edge of Gx, where y is a child node of x′ with y ̸= x. This implies that C also enters Gx′ as
otherwise C passes through the vertex of (2) twice, contradicting the fact that C is a cycle. Also, C ′ enters
Gx′ , which leads to a contradiction as mentioned above.

Let S be a largest solution of G. Suppose that x is a •-node of T with c children x1, x2, . . . , xc. For an
integer i ∈ [c], let si and ti denote a source and a sink of Gxi

, respectively. We distinguish the following two
cases to consider:

(s1) at least one cycle C in S enters Gx and siti ∈ E(C) for every integer i ∈ [c];

(s2) at least one cycle C in S enters Gx and siti /∈ E(C) for some integer i ∈ [c].

Similarly, for a ∥-node x with a source s and a sink t, we also distinguish the following two cases to consider:

(p1) at least one cycle C in S enters Gx and st ∈ E(C);

(p2) at least one cycle C in S enters Gx and st /∈ E(C);

We note that the above cases are not exhaustive: there may be no cycle in S entering Gx. It is not necessary
to consider such a case in the construction of our algorithm. We also note that by Lemma 3, there are no
more than one (edge-disjoint) cycle satisfying these conditions.

Let Lx
H be a restriction of LH to Gx, that is, Lx

H = {H ∈ LH : E(H) ⊆ E(Gx)}. In our algorithm, for
each node x of T , we compute the largest size of a subcollection Sx with Sx = S ∩ Lx

H. Let f•(x) be the
largest size of Sx for a •-node x, and let f∥(x) be the largest size of Sx for a ∥-node x. Notice that, originally,
leaves of T are labeled neither • nor ∥, and hence f•(x) and f∥(x) cannot be defined for the leaves. For
algorithmic simplicity, we consider a leaf x as a •-node if its parent is labeled ∥, and as a ∥-node if its parent
is labeled •. This simplification allows us to define f•(x) and f∥(x) for a leaf x accordingly.

We also define the truth values b•j (x) and b
∥
j (x) for each j ∈ {1, 2} and each node x of T . We set b•j (x) = 1

(resp. b
∥
j (x) = 1) if and only if there exists a mutually edge-disjoint subcollection S ′

x of Lx
H that satisfies the

following conditions:

• |S ′
x| = f•(x) (resp. |S ′

x| = f∥(x));

• there exists a cycle C ∈ LH \ Lx
H corresponding to the case (sj) (resp. (pj));

• all subgraphs in S ′
x and C are edge-disjoint.

15

Intuitively speaking, b•j (x) = 1 (and b
∥
j (x) = 1) if and only if we can further add a cycle C entering Gx into

a partial solution at an ancestor of x.

We are ready to explain how to compute f•(x), f∥(x), b•j (x), and b
∥
j (x) for each node x of T and each

j ∈ {1, 2}.

Leaf node. Suppose that x is a leaf of T . Let s and t be the source and the sink of Gx, respectively. One

can verify that the following equalities hold: f•(x) = f∥(x) = 0; b•1(x) = b
∥
1(x) = 1 if and only if there exists

a cycle C in LH such that st ∈ E(C); and b•2(x) = b
∥
2(x) = 0.

Internal •-node. Suppose that x is a •-node with c children x1, . . . , xc. Since Gx consists of series
compositions of Gx1

, . . . , Gxc
, every cycle in Gx is contained in Gxi

for some i. We thus have

f•(x) =
∑
i∈[c]

f∥(xi).

We next compute b•j (x) for each j ∈ {1, 2}. Recall that x has at most three children.
Suppose that c = 3. If there exists a cycle C ∈ LH \ Lx

H that enters Gx, then it passes through s1 and
t3, meaning that it enters Gxi for all i ∈ [3]. Conversely, for every i ∈ [3], if there is a cycle Ci ∈ LH \ Lxi

H
such that Ci enters Gxi , then it must have E(Ci) = {s1t1, s2t2, s3t3, t3s1}, that is, the cycle is uniquely
determined C = Ci for i ∈ [3]. It is easy to observe that C is edge-disjoint from any cycles in Sx if and only

if it is edge-disjoint from any cycles in Sxi
for all i ∈ [3]. Hence, we have b•1(x) = b

∥
1(x1) ∧ b

∥
1(x2) ∧ b

∥
1(x3).

This also implies that there is no cycle C ∈ S that enters Gx and siti /∈ E(C), which yields that b•2(x) = 0.
Suppose next that c = 2. By the similar argument to the case c = 3, we have b•1(x) = 1 if and only

if b
∥
1(x1) ∧ b

∥
1(x2) = 1 and there is a cycle C ∈ LH \ Lx

H such that s1t1, s2t2 ∈ E(C). We explain how
to decide b•2(x). If there is a cycle C ∈ LH \ Lx

H with s1t1 /∈ E(C) that enters Gx, then it enters both
Gx1

and Gx2
, and it holds that s2t2 ∈ E(C) because the length of C is at most 4. Conversely, for a cycle

C1 ∈ LH \ Lx1

H such that C1 enters Gx1 and s1t1 /∈ E(C1), C1 also enters Gx2 and Gx, and s2t2 ∈ E(C1)
holds. The same argument is applied to a cycle C ∈ LH \ Lx

H with s2t2 /∈ E(C) that enters Gx. Thus, we

have b•2(x) = (b
∥
2(x1) ∧ b

∥
1(x2)) ∨ (b

∥
1(x1) ∧ b

∥
2(x2)).

Internal ∥-node. Suppose that x is a ∥-node with c children x1, . . . , xc. Let s and t be the source and the
sink of Gx, respectively.

To compute f∥(x), we construct an auxiliary graph Ax whose vertex set is {a1, a2, . . . , ac}. We associate
each child xi of x with a vertex ai. Let i, j ∈ [c] be distinct integers. Suppose that xi and xj are internal
nodes of T . Then, Ax has an edge aiaj if b•1(xi)∧ b•1(xj) = 1 and there exists a cycle in Lx

H that enters both
Gxi

and Gxj
. Note that such a cycle C satisfies |E(C) ∩E(Gxi

)| = |E(C) ∩E(Gxj
)| = 2, which means that

C must satisfy the case (s1) for •-nodes xi and xj . Suppose next that xi is an internal node and xj is a
leaf of T . In this case, st ∈ E(Gxj). Then, Ax has an edge aiaj if at least one of the following conditions is
satisfied:

1. xi has exactly c children with c ∈ {2, 3}, b•1(xi) = 1, and there exists a cycle C in Lx
H of length c + 1

that enters both Gxi
and Gxj

; or

2. b•2(xi) = 1.

Note that, in the second case b•2(xi) = 1, there is a cycle C ∈ LH \Lxi

H entering Gxi such that xi has a child y
with |E(C)∩E(Gy)| ≥ 2. This implies that C has exactly three edges in Gxi and hence we have st ∈ E(C).
Also note that there is no case that both xi and xj are leaves because G has no parallel edges. We complete
the construction of Ax.

The intuition of the auxiliary graph Ax is as follows. If there is an edge aiaj ∈ Ax, then we can further
add a cycle C in Gxi

∥ Gxj
that is edge-disjoint from any cycles in

⋃
h∈[c] Sxh

. We can simultaneously add
such cycles for other edges in Ax. However, by Lemma 3, we cannot add more than one cycles entering Gxi .

16

Thus, in order to add as many such cycles as possible, the corresponding edges must form a matching in Ax.
In fact, the following equality holds.

f∥(x) =
∑
i∈[c]

f•(xi) + |M∗
x |, (1)

where M∗
x be a maximum matching of Ax. The correctness of Equation (1) will be given in Section 5.2.1.

To compute b
∥
j (x) for each j ∈ {1, 2}, we construct additional auxiliary graphs A1

x and A2
x from Ax. Let

A1
x be the graph obtained from Ax as follows. We first add a vertex a′. Then, we add an edge a′ai if x has

a leaf child xi and there is a cycle C ∈ LH \ Lx
H such that C enters Gx and st ∈ E(C).

Similarly, let A2
x be the graph obtained from Ax as follows. We first add a vertex a′′. Then, for each

i ∈ [c], we add an edge a′′ai if xi is an internal node of T , b•1(xi) = 1 and there is a cycle C ∈ LH \ Lx
H that

enters Gxi .

Let M1
x and M2

x be maximum matchings of A1
x and A2

x, respectively. We let b
∥
1(x) = 1 if and only if

|M1
x | > |M∗

x |; and b
∥
2(x) = 1 if and only if |M2

x | > |M∗
x |. The correctness of the computation of these truth

values will be given in Section 5.2.1.
Finally, we conclude that f∥(r) is the size of a largest solution of G.

5.2.1 Correctness

Lemma 4. Equation (1) is correct.

Proof. We first show that f∥(x) ≥
∑

i∈[c] f
•(xi) + |M∗

x |. For i ∈ [c], let Sxi
be a mutually edge-disjoint

subcollection of Lxi

H such that |Sxi | = f•(xi). Recall that each edge aiaj in M∗
x corresponds to a cycle in Lx

H
that enters both Gxi

and Gxj
and edge-disjoint from any cycle in Sxi

∪Sxj
. Let Mx be a subcollection of cycles

in Lx
H corresponding to M∗

x . Observe that cycles in Mx are mutually edge-disjoint because M∗
x is a matching

of Ax. Therefore, (
⋃

i∈[c] Sxi
)∪Mx is mutually edge-disjoint, and hence we have f∥(x) ≥

∑
i∈[c] f

•(xi)+|M∗
x |.

We next show that f∥(x) ≤
∑

i∈[c] f
•(xi)+|M∗

x |. Suppose that Sx is a mutually edge-disjoint subcollection

of Lx
H such that |Sx| = f∥(x). Consider a cycle C in Sx entering both Gxi

and Gxj
such that xi and xj

are internal nodes of T . If aiaj /∈ E(Ax), then it holds that b•1(xi) ∧ b•1(xj) = 0. Without loss of generality,
assume that b•1(xi) = 0. Let Sxi

= Sx ∩ Lxi

H . Observe that |Sxi
| − 1 ≤ f•(xi) as otherwise, the fact that the

cycle C is edge-disjoint from any cycles in Sxi implies that b•1(xi) = 1. Then, we can replace Sxi ∪ {C} with
an edge-disjoint subcollection S ′

xi
with |S ′

xi
| = f•(xi) in Sx (i.e., Sx := (Sx \ (Sxi ∪ {C}) ∪ S ′

xi
). The same

argument is applicable to the case where one of xi and xj is a leaf of T . Applying the above replacement
exhaustively, we eventually obtain a mutually edge-disjoint subcollection S∗

x ⊆ Lx
H with |S∗

x| = f∥(x) that
satisfied the following condition: For each cycle C in S∗

x that enters both Gxi
and Gxj

for distinct i, j ∈ [c],
Ax has an edge aiaj . We denote by C ⊆ S∗

x the set of cycles, each of which enters Gxi and Gxj for distinct
i, j ∈ [c]. Let M be the subset of E(Ax) corresponding to C. Then, M forms a matching of Ax; otherwise,
there are two edge-disjoint cycles that enter Gxi

for some i ∈ [c], which contradicts Lemma 3. Denote
S∗
xi

= S∗
x ∩ Lxi

H for each i ∈ [c]. Obviously, it holds that |S∗
xi
| ≤ f•(xi). Since S∗

x = (
⋃

i∈[c] S∗
xi

) ∪ C, we

thus have f∥(x) ≤
∑

i∈[c] f
•(xi) + |M | ≤

∑
i∈[c] f

•(xi) + |M∗
x | as M∗

x is a maximum matching of Ax. This
completes the proof of Lemma 4.

Lemma 5. Let M1
x and M2

x denote maximum matchings of A1
x and A2

x, respectively. Then, b
∥
1(x) = 1 if

and only if |M1
x | > |M∗

x |; and b
∥
2(x) = 1 if and only if |M2

x | > |M∗
x |.

Proof. We prove the former claim of the lemma. Suppose that b
∥
1(x) = 1. From the definition of b

∥
1(x),

there exists a mutually edge-disjoint subcollection S ′
x of Lx

H with |S ′
x| = f∥(x) and a cycle C ∈ LH \ Lx

H
with st ∈ E(C) that is edge-disjoint from any cycle in S ′

x. Then, we can construct a matching M of Ax

corresponding to a maximum subcollection C ⊆ S ′
x such that each cycle in C enters Gxi

and Gxj
for some

i, j ∈ [c]. By Lemma 3, such a subcollection C is uniquely determined. As M∗
x is a maximum matching of

17

Ax, we have |M | ≤ |M∗
x |. We now claim that |M | = |M∗

x |. Suppose to the contrary that |M | < |M∗
x |. Denote

S ′
xi

= S ′
x ∩ Lxi

H for each i ∈ [c]. Since S ′
x = (

⋃
i∈[c] S ′

xi
) ∪ C, we have |S ′

x| = (
∑

i∈[c] |S ′
xi
|) + |M |. Combined

with the facts f∥(x) =
∑

i∈[c] f
•(xi) + |M∗

x |, |M | < |M∗
x |, and |S ′

x| = f∥(x), we can observe that there exists

p ∈ [c] such that |S ′
xp
| > f•(xp), which contradicts the definition of f•(xp). Thus, we have |M | = |M∗

x |.
Let xi be the child of x corresponding to the edge st. Since st ∈ E(C) and C is edge-disjoint from any

cycles in S ′
x, every edge in M is not incident to ai. Thus, M∪{a′ai} forms a matching of A1

x. As |M | = |M∗
x |,

we have |M1
x | ≥ |M ∪ {a′ap}| > |M | = |M∗

x |.
Conversely, suppose that |M1

x | > |M∗
x |. This implies that there is an edge e ∈ M1

x incident to a′. Let C be
the cycle in LH\Lx

H corresponding to e. As in the proof of Lemma 4, we can construct a mutually edge-disjoint
subcollection S ′

x of Lx
H such that |S ′

x| =
∑

i∈[c] f
•(xi) + |M1

x \ {e}|. Since |M1
x \ {e}| = |M1

x | − 1 ≥ |M∗
x |, we

have |S ′
x| ≥

∑
i∈[c] f

•(xi)+|M∗
x | = f∥(x). It clearly holds that |S ′

x| ≤ f∥(x), and hence we have |S ′
x| = f∥(x).

Moreover, every subgraph in S ′
x and C are edge-disjoint. Therefore, we have b

∥
1(x) = 1.

The latter claim can be proved in the similar way, which completes the proof of Lemma 5.

5.2.2 Running time

Let n and m be the number of vertices and edges of a given series-parallel graph G, respectively, and let LH
be a collection of cycles in G of length at most 4. As noted at the beginning of Section 5.2, our algorithm
is applied to each of β∗ biconnected components G1, G2, . . . , Gβ∗ of G. We can enumerate biconnected

components of G in O(n+m) time [20] and partition LH into L1
H,L2

H, . . . ,Lβ∗

H so that Lβ
H is the subcollection

of LH consisting of all cycles in Gβ for each β ∈ [β∗] in O(|LH|) time.
For β ∈ [β∗], we denote by nβ and mβ the number of vertices and edges of Gβ , respectively. We may

assume that edges of Gβ are labeled distinct integers 1, 2, . . . ,mβ . Each cycle C of Gβ with h edges produces
a word x1x2 . . . xh such that xi ∈ [mβ] for every i ∈ [h] and x1 < x2 < · · · < xh. As a preprocessing, we

convert every cycle in Lβ
H to a corresponding word, and then lexicographically sort Lβ

H with radix sort. Since

every cycle in Lβ
H is of length at most 4, this can be done in O(|Lβ

H| + mβ) time. Using this data structure,

we can check whether given a cycle C is in LH in time O(log |Lβ
H|) with binary search.

After the preprocessing, we construct an (original) decomposition tree of Gβ in O(nβ) time [36]. It is
not hard to see that the decomposition tree can be modified into a layered decomposition tree Tβ in O(nβ)
time with depth-first search. Moreover, we record the source and the sink of Gx in each node x of Tβ .

We bound the running time of our dynamic programming. Obviously, for each leaf x of Tβ , we can

compute f•(x), f∥(x), b•j (x), and b
∥
j (x) for each j ∈ {1, 2} in O(1) time. Moreover, f•(x), b•1(x), and b•2(x)

are computed in O(1) time for each •-node x of Tβ .
Consider the case where x is an internal ∥-node of Tβ . Let cx denote the number of children of x. Our

algorithm first constructs the auxiliary graph Ax with the vertex set {a1, . . . , acx}. Let i, j ∈ [cx] be distinct
integers. Suppose that xi and xj are internal nodes of Tβ . We check whether b•1(xi) ∧ b•1(xj) = 1 in O(1)
time. Moreover, we check whether there exists a cycle C that enters both Gxi and Gxj . In fact, the cycle C
is uniquely determined if it exists: each of Gxi

and Gxj
is obtained by a series composition of two graphs,

meaning that |E(C) ∩ E(Gxi
)| = |E(C) ∩ E(Gxj

)| = 2. We can compute such a cycle C in O(1) time
by recording the source and the sink of a graph corresponding to each node, while we can decide whether
C ∈ Lβ

H in O(log |Lβ
H|) time using the above data structure. As |Lβ

H| is bounded by n4
β above, this can be

done in O(log nβ) time, which also decides whether aiaj ∈ E(Ax) or not. Similarly, for the case where xi is
an internal node and xj is a leaf of Tβ , we can determine in O(log nβ) time whether aiaj ∈ E(Ax) or not.
Therefore, the construction of Ax takes O(c2x log nβ) time.

We then construct graphs A1
x and A2

x from Ax to compute b
∥
1(x) and b

∥
2(x). For the graph A1

x, we need
to decide whether a′ai ∈ E(A1

x), where xi for i ∈ [cx] is the unique leaf child of x (if it exists). To this end,
we construct the collection C1

x of all cycles that enter Gx and contain the edge of Gxi
. If x is the root of

T , then clearly C1
x = ∅. Otherwise x has the parent y labeled • and y has the parent z labeled ∥ as the

root of Tβ has label ∥. If y has three children, C1
x can be obtained in O(1) time because a possible cycle

contained in C1
x is uniquely determined. Suppose that y has exactly two children and let x′ be a child of y

18

with x′ ̸= x. For any cycle C ∈ C1
x, the following two cases are considered: (i) C shares exactly one edge with

Gx′ ; and (ii) C shares exactly two edges with Gx′ . In the case (i), for each child cz of z, at most two edges
in Gcz that can be shared with C are uniquely determined because cz is a leaf of Tβ or labeled •. In the
case (ii), for each child cy of y, exactly two edges in Gcy that can be shared with C are uniquely determined
and C contains an edge between the source and the sink of Gz. In both cases, C1

x of size O(nβ) can be

constructed in O(nβ) time. We thus decide in O(nβ log nβ) time whether there is a cycle C ∈ C1
x ∩Lβ

H, that
is, a′ai ∈ E(A1

x). For the graph A2
x, we decide whether a′′ai ∈ E(A1

x) for each i ∈ [cx] such that xi is an
internal node of Tβ . We check whether b•1(xi) = 1, and if so, there exists a cycle C ∈ LH \ Lx

H that enters
Gxi

. Since Gxi
shares exactly two edges with C, the cycle is uniquely determined for each i ∈ [cx] as in

the case (ii) above. Thus, A2
x is constructed in O(cx log nβ) time. After the construction of Ax, A1

x, and
A2

x, we obtain maximum matchings M∗
x , M1

x , and M2
x in O(c2.5x) time, respectively [29]. Therefore, f∥(x) is

computed in O(c2x log nβ + nβ log nβ + c2.5x) time for each ∥-node x of T .
In summary, f∥(r) is obtained in time

O(mβ + |Lβ
H| +

∑
x∈V (T)

(c2x log nβ + nβ log nβ + c2.5x)).

Recall that
∑

x∈V (T) cx = O(nβ) and mβ = O(nβ) hold. Therefore, our algorithm for Gβ runs in O(|Lβ
H| +

n2.5
β) time. Since

∑
β∈[β∗] nβ = n+b∗ ≤ 2n, we conclude that the total running time for a given series-parallel

graph G is bounded by O(|LH| + n2.5). This completes the proof of Theorem 15.

Acknowledgements

We thank the referees for their valuable comments and suggestions which greatly helped to improve the
presentation of this paper.

References

[1] Jin Akiyama and Vasek Chvátal. “Packing paths perfectly”. In: Discret. Math. 85.3 (1990), pp. 247–
255. doi: 10.1016/0012-365X(90)90382-R.

[2] N. R. Aravind and Roopam Saxena. “Parameterized Complexity of Path Set Packing”. In: the 17th
International Conference and Workshops (WALCOM 2023). Ed. by Chun-Cheng Lin, Bertrand M. T.
Lin, and Giuseppe Liotta. Cham: Springer Nature Switzerland, 2023, pp. 291–302. doi: 10.1007/978-
3-031-27051-2_25.

[3] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. “Complexity of Finding Embeddings in
a k-Tree”. In: SIAM Journal on Algebraic Discrete Methods 8.2 (1987), pp. 277–284. doi: 10.1137/
0608024.

[4] V. Bafna and P.A. Pevzner. “Genome rearrangements and sorting by reversals”. In: Proceedings of
1993 IEEE 34th Annual Foundations of Computer Science. 1993, pp. 148–157. doi: 10.1109/SFCS.
1993.366872.

[5] Fran Berman, David Johnson, Tom Leighton, Peter W. Shor, and Larry Snyder. “Generalized planar
matching”. In: Journal of Algorithms 11.2 (1990), pp. 153–184. doi: 10.1016/0196-6774(90)90001-U.

[6] Hans L. Bodlaender. “A partial k-arboretum of graphs with bounded treewidth”. In: Theoretical Com-
puter Science 209.1 (1998), pp. 1–45. doi: 10.1016/S0304-3975(97)00228-4.

[7] Hans L. Bodlaender. “On Disjoint Cycles”. In: Int. J. Found. Comput. Sci. 5.1 (1994), pp. 59–68. doi:
10.1142/S0129054194000049.

[8] Koen M. J. De Bontridder, Bjarni V. Halldórsson, Magnús M. Halldórsson, Cor A. J. Hurkens, Jan
Karel Lenstra, R. Ravi, and Leen Stougie. “Approximation algorithms for the test cover problem”. In:
Math. Program. 98.1-3 (2003), pp. 477–491. doi: 10.1007/s10107-003-0414-6.

19

https://doi.org/10.1016/0012-365X(90)90382-R
https://doi.org/10.1007/978-3-031-27051-2_25
https://doi.org/10.1007/978-3-031-27051-2_25
https://doi.org/10.1137/0608024
https://doi.org/10.1137/0608024
https://doi.org/10.1109/SFCS.1993.366872
https://doi.org/10.1109/SFCS.1993.366872
https://doi.org/10.1016/0196-6774(90)90001-U
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1142/S0129054194000049
https://doi.org/10.1007/s10107-003-0414-6

[9] Alberto Caprara and Romeo Rizzi. “Packing triangles in bounded degree graphs”. In: Inf. Process.
Lett. 84.4 (2002), pp. 175–180. doi: 10.1016/S0020-0190(02)00274-0.

[10] F.R.K Chung and R.L. Graham. “Recent results in graph decompositions”. In: London Mathematical
Society, Lecture Note Series 52 (1981), pp. 103–123.

[11] Derek G. Corneil, Shigeru Masuyama, and S. Louis Hakimi. “Edge-disjoint packings of graphs”. In:
Discret. Appl. Math. 50.2 (1994), pp. 135–148. doi: 10.1016/0166-218X(92)00153-D.

[12] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk,
Micha l Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. doi: 10.1007/978-
3-319-21275-3.

[13] M.E. Dyer and A.M. Frieze. “On the complexity of partitioning graphs into connected subgraphs”. In:
Discrete Applied Mathematics 10.2 (1985), pp. 139–153. doi: 10.1016/0166-218X(85)90008-3.

[14] P. Erdős and L. Pósa. “On Independent Circuits Contained in a Graph”. In: Canadian Journal of
Mathematics 17 (1965), pp. 347–352. doi: 10.4153/CJM-1965-035-8.

[15] Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. “On the parame-
terized complexity of multiple-interval graph problems”. In: Theor. Comput. Sci. 410.1 (2009), pp. 53–
61. doi: 10.1016/j.tcs.2008.09.065.

[16] Henning Fernau and Daniel Raible. “A parameterized perspective on packing paths of length two”. In:
J. Comb. Optim. 18.4 (2009), pp. 319–341. doi: 10.1007/s10878-009-9230-0.

[17] M.R. Garey, D.S. Johnson, and L. Stockmeyer. “Some simplified NP-complete graph problems”. In:
Theoretical Computer Science 1.3 (1976), pp. 237–267. doi: 10.1016/0304-3975(76)90059-1.

[18] Venkatesan Guruswami, C. Pandu Rangan, Maw-Shang Chang, Gerard J. Chang, and C. K. Wong.
“The Vertex-Disjoint Triangles Problem”. In: Graph-Theoretic Concepts in Computer Science, 24th
International Workshop, WG ’98. Ed. by Juraj Hromkovic and Ondrej Sýkora. Vol. 1517. Lecture
Notes in Computer Science. Springer, 1998, pp. 26–37. doi: 10.1007/10692760_3.

[19] Lenwood S. Heath and John Paul C. Vergara. “Edge-Packing in Planar Graphs”. In: Theory Comput.
Syst. 31.6 (1998), pp. 629–662. doi: 10.1007/s002240000107.

[20] John Hopcroft and Robert Tarjan. “Algorithm 447: Efficient Algorithms for Graph Manipulation”. In:
Communications of the ACM 16.6 (1973), pp. 372–378. doi: 10.1145/362248.362272.

[21] Minghui Jiang, Ge Xia, and Yong Zhang. “Edge-disjoint packing of stars and cycles”. In: Theoretical
Computer Science 640 (2016), pp. 61–69. doi: https://doi.org/10.1016/j.tcs.2016.06.001.

[22] Atsushi Kaneko, Alexander Kelmans, and Tsuyoshi Nishimura. “On packing 3-vertex paths in a graph”.
In: Journal of Graph Theory 36.4 (2001), pp. 175–197. doi: https://doi.org/10.1002/1097-

0118(200104)36:4<175::AID-JGT1005>3.0.CO;2-T.

[23] Richard M. Karp. “Reducibility Among Combinatorial Problems”. In: Proceedings of a symposium
on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Wat-
son Research Center, Yorktown Heights, New York, USA. Ed. by Raymond E. Miller and James
W. Thatcher. The IBM Research Symposia Series. Plenum Press, New York, 1972, pp. 85–103. doi:
10.1007/978-1-4684-2001-2_9.

[24] David G. Kirkpatrick and Pavol Hell. “On the Complexity of General Graph Factor Problems”. In:
SIAM J. Comput. 12.3 (1983), pp. 601–609. doi: 10.1137/0212040.

[25] Adrian Kosowski, Micha l Ma lafiejski, and Pawe l Żyliński. “Parallel Processing Subsystems with Re-
dundancy in a Distributed Environment”. In: Parallel Processing and Applied Mathematics, 6th In-
ternational Conference, PPAM 2005. Ed. by Roman Wyrzykowski, Jack J. Dongarra, Norbert Meyer,
and Jerzy Wasniewski. Vol. 3911. Lecture Notes in Computer Science. Springer, 2005, pp. 1002–1009.
doi: 10.1007/11752578_121.

[26] Daniel Lokshtanov, Amer E. Mouawad, Saket Saurabh, and Meirav Zehavi. “Packing Cycles Faster
Than Erdos-Posa”. In: SIAM J. Discret. Math. 33.3 (2019), pp. 1194–1215. doi: 10.1137/17M1150037.

20

https://doi.org/10.1016/S0020-0190(02)00274-0
https://doi.org/10.1016/0166-218X(92)00153-D
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/0166-218X(85)90008-3
https://doi.org/10.4153/CJM-1965-035-8
https://doi.org/10.1016/j.tcs.2008.09.065
https://doi.org/10.1007/s10878-009-9230-0
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1007/10692760_3
https://doi.org/10.1007/s002240000107
https://doi.org/10.1145/362248.362272
https://doi.org/https://doi.org/10.1016/j.tcs.2016.06.001
https://doi.org/https://doi.org/10.1002/1097-0118(200104)36:4<175::AID-JGT1005>3.0.CO;2-T
https://doi.org/https://doi.org/10.1002/1097-0118(200104)36:4<175::AID-JGT1005>3.0.CO;2-T
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1137/0212040
https://doi.org/10.1007/11752578_121
https://doi.org/10.1137/17M1150037

[27] Micha l Ma lafiejski and Pawe l Żyliński. “Weakly Cooperative Guards in Grids”. In: Computational
Science and Its Applications – ICCSA 2005. Ed. by Osvaldo Gervasi, Marina L. Gavrilova, Vipin
Kumar, Antonio Laganà, Heow Pueh Lee, Youngsong Mun, David Taniar, and Chih Jeng Kenneth
Tan. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 647–656. doi: 10.1007/11424758_68.

[28] Shigeru Masuyama and Toshihide Ibaraki. “Chain Packing in Graphs”. In: Algorithmica 6.6 (1991),
pp. 826–839. doi: 10.1007/BF01759074.

[29] Silvio Micali and Vijay V. Vazirani. “An O(
√
|V ||E|) algorithm for finding maximum matching in

general graphs”. In: 21st Annual Symposium on Foundations of Computer Science (sfcs 1980). 1980,
pp. 17–27. doi: 10.1109/SFCS.1980.12.

[30] George J. Minty. “On maximal independent sets of vertices in claw-free graphs”. In: J. Comb. Theory,
Ser. B 28.3 (1980), pp. 284–304. doi: 10.1016/0095-8956(80)90074-X.

[31] Owen J. Murphy. “Computing independent sets in graphs with large girth”. In: Discret. Appl. Math.
35.2 (1992), pp. 167–170. doi: 10.1016/0166-218X(92)90041-8.

[32] Svatopluk Poljak. “A note on stable sets and colorings of graphs”. eng. In: Commentationes Mathe-
maticae Universitatis Carolinae 015.2 (1974), pp. 307–309.

[33] Elena Prieto-Rodriguez and Christian Sloper. “Looking at the stars”. In: Theor. Comput. Sci. 351.3
(2006), pp. 437–445. doi: 10.1016/j.tcs.2005.10.009.

[34] Najiba Sbihi. “Algorithme de recherche d’un stable de cardinalite maximum dans un graphe sans
etoile”. In: Discret. Math. 29.1 (1980), pp. 53–76. doi: 10.1016/0012-365X(90)90287-R.

[35] Petra Scheffler. Practical linear time algorithm for disjoint paths in graphs with bounded tree-width.
Tech. rep. FU Berlin, Fachbereich 3 Mathematik, 1994.

[36] Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler. “The Recognition of Series Parallel Digraphs”.
In: SIAM Journal on Computing 11.2 (1982), pp. 298–313. doi: 10.1137/0211023.

[37] Jianxin Wang, Dan Ning, Qilong Feng, and Jianer Chen. “An Improved Parameterized Algorithm
for a Generalized Matching Problem”. In: Theory and Applications of Models of Computation, 5th
International Conference. Ed. by Manindra Agrawal, Ding-Zhu Du, Zhenhua Duan, and Angsheng Li.
Vol. 4978. Lecture Notes in Computer Science. Springer, 2008, pp. 212–222. doi: 10.1007/978-3-
540-79228-4_19.

[38] Chenyang Xu and Guochuan Zhang. “The Path Set Packing Problem”. In: the 24th International
Conference (COCOON 2018). Ed. by Lusheng Wang and Daming Zhu. Cham: Springer International
Publishing, 2018, pp. 305–315. doi: 10.1007/978-3-319-94776-1_26.

21

https://doi.org/10.1007/11424758_68
https://doi.org/10.1007/BF01759074
https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1016/0095-8956(80)90074-X
https://doi.org/10.1016/0166-218X(92)90041-8
https://doi.org/10.1016/j.tcs.2005.10.009
https://doi.org/10.1016/0012-365X(90)90287-R
https://doi.org/10.1137/0211023
https://doi.org/10.1007/978-3-540-79228-4_19
https://doi.org/10.1007/978-3-540-79228-4_19
https://doi.org/10.1007/978-3-319-94776-1_26

	1 Introduction
	2 Preliminaries
	3 List -packing on bounded degree graphs
	4 Vertex Disjoint List -Packing on bounded-treewidth graphs
	5 Edge Disjoint List -Packing on series-parallel graphs
	5.1 Hardness
	5.2 Polynomial-time algorithm of Edge Disjoint List -packing for
	5.2.1 Correctness
	5.2.2 Running time

