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Abstract. Can a list of binary strings be ordered so that consecutive strings dif-
fer in a single bit? Can a list of permutations be ordered so that consecutive
permutations differ by a swap? Can a list of non-crossing set partitions be or-
dered so that consecutive partitions differ by refinement? These are examples of
Gray coding problems: Can a list of combinatorial objects (of a particular type
and size) be ordered so that consecutive objects differ by a flip (of a particu-
lar type)? For example, 000, 001, 010, 100 is a no instance of the first question,
while 1234, 1324, 1243 is a yes instance of the second question due to the or-
der 1243, 1234, 1324. We prove that a variety of Gray coding problems are NP-
complete using a new tool we call a Gray code reduction.

1 Introduction

In a 1947 patent application, Bell Labs engineer Frank Gray devised an order of the 2n

binary strings of length n in which consecutive strings differ by flipping a single bit
(i.e., they have Hamming distance one) [10]. He referred to the order as reflected binary
code due to its recursive structure. Although the order had previously been observed by
others, including another Bell Labs engineer George R. Stibitz [35], the order became
known as the binary reflected Gray code (BRGC), or simply, the Gray code.

While Bell Labs was able to solve their ordering problem several times, similar pur-
suits are often quite challenging. For example, the well-studied middle levels conjecture
[2] asked if the same type of ordering exists for the binary strings of length 2k + 1 with
either k or k + 1 copies of 1. Knuth gave this conjecture a difficulty rating of 49/50 [16]
before it was settled in the affirmative by Mütze [22], with subsequent work simplifying
[24], specializing [18], and generalizing [11] [20] the result.

Centuries earlier, bell-ringers developed an order of the n! permutations of [n] =
{1, 2, . . . , n} (viewed as strings) where consecutive permutations differ by a swap (or
adjacent-transposition) meaning that two neighboring symbols are exchanged [6]. Plain
changes was rediscovered independently by Johnson [14], Trotter [37], and Steinhaus
[33] in the 1960s for its use in the efficient generation of permutations by computer.

In general, when presented with a combinatorial object and a flip operation, one
may ask for an order in which successive objects differ by a flip. Suitable orders are
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sometimes referred to as minimal change orders or combinatorial Gray codes. Aca-
demic surveys have been written by Savage [29] and more recently Mütze [23], with
Ruskey [27] and Knuth [16] devoting extensive textbook coverage to the subject. De-
spite the long history of the subject, there are still natural Gray code questions that
haven’t been answered or even posed. For example, in Section 4 we’ll consider such a
question involving non-crossing set partitions.

1.1 Gray Codes and Computational Complexity

When Gray codes are mixed with computational complexity the focus is typically on
generation problems: How efficiently can a particular order can be generated? For ex-
ample, Ehrlich’s well-known paper [9] provides loopless algorithms for the binary re-
flected Gray code and plain changes using the shared object model. In other words, one
instance of the object is shared between the generation algorithm and the application,
and it is modified in worst-case O(1)-time to create the next instance. More recent work
has focused on limiting generation algorithms to constant additional memory [34] [17].

We instead show that there are computationally hard existence problems that under-
lie the problems solved by Bell Labs engineers, bell-ringers, and many others through-
out history. More specifically, we consider existence problems like the following:

Q1 Can a list of binary strings be ordered so that consecutive strings differ by a bitflip?
Q2 Can a list of permutations of be ordered so that consecutive strings differ by a swap?

For example, 000, 001, 010, 100 is a no instance of Q1, while 1234, 1324, 1243 is a yes
instance of Q2 due to the order 1243, 1234, 1324. Note that in these decision problems
the type of object and flip operation is fixed, and the input is the list of objects under
consideration. To be clear, each object in the list is provided as part of the input, so the
size of the input increases along with the number of objects in the list.4

We refer to these existence problems as Gray coding problems, with the connotation
that we are trying to do something to the list of objects. We consider classic combina-
torial objects including binary strings, permutations, combinations, (non-crossing) set
partitions, and graphs. In each case, we identify at least one flip operation for which the
Gray coding problem is NP-complete (including Q1 and Q2).

1.2 Outline

In Section 2–3 we establish that two specific Gray coding problems are NP-complete.
Then Section 4 introduces our notion of a Gray code reduction. Sections 5–7 use these
reductions to obtain additional hardness results for a variety of combinatorial objects.
Final remarks are contained in Section 8.

2 A First NP-Complete Problem

In this section, we discuss a first Gray coding problem that is NP-complete.
4 Conceptually, the input could be described as a subset of the objects. However, subsets of an

n-set are often encoded as n-bit incidence vectors, and we want to avoid this misinterpretation.
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2.1 2-Tuple Gray Codes

In the 2-tuple Gray coding problem, we are given some integer 2-tuples, and we want
to decide if we can order the 2-tuples such that consecutive 2-tuples differ only in ±1 in
one of the coordinates. More formally, we use Pm to denote the permutations of length
m and have the following problem.

2TupleGC
Input: A list L of m integer 2-tuples (a1, b1), . . . , (am, bm) ∈ N × N.
Question: Is there a ±1 Gray code for L? In other words, is there a permutation

π ∈ Pm such that |aπ(i) −aπ(i+1)|+ |bπ(i) −bπ(i+1)| = 1 for every i ∈ [m−1]?

For technical reasons, we also consider a version of 2TupleGC where the integers
have no gaps between them. We say that a list of integer 2-tuples (a1, b1), . . . , (am, bm)
is continuous if the set of values that ai and bi take for i ∈ [m] are consecutive integers
starting from 1; i.e., {ai | i ∈ [m]} = [maxi∈[m] ai] and {bi | i ∈ [m]} = [maxi∈I bi].

2TupleGC’
Input: A continuous list L of m integer 2-tuples (a1, b1), . . . , (am, bm) ∈ N × N.
Question: Is 2TupleGC(L) true?

2.2 Grid Graph Hamiltonicity

Hamilton Path problems have been central to evolution of computational complexity,
dating back to Karp’s initial list of 21 NP-complete problems [15].

A grid graph is a graph, where the vertex set is given by some integer 2-tuples
L = {(a1, b1), . . . , (am, bm)} and there are edges between all pairs of 2-tuples that differ
by 1 on a single coordinate. Since the grid graph is completely defined by the integer
2-tuples, we denote by grid(L) the unique grid graph that has L as vertices.

Of particular relevance to us, is the powerful sharpening of this result by Itai, Pa-
padimitriou, and Szwarcfiter which shows hardness for Hamiltonian paths problems on
grid graphs [13]. More formally, the following problem is hard.

GridHamPath
Input: A list L of m integer 2-tuples (a1, b1), . . . , (am, bm) ∈ N × N.
Question: Is there a Hamilton path in grid(L)?

Theorem 1 ([13]). GridHamPath is NP-complete.

2.3 Hardness Results

The problem GridHamPath can be easily translated into an equivalent 2TupleGC prob-
lem. In fact, they are essentially the same problem.

Corollary 1. 2TupleGC is NP-complete.

Proof. We note that both problems have the same input, and L = (a1, b1), . . . , (am, bm)
is a Hamilton path of grid(L) if and only if L is a ±1 Gray code. ⊓⊔
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Furthermore, 2TupleGC is hard even when we restrict the input to be continuous.
Intuitively, non-continuous inputs give rise to disconnected grid graphs or can be trans-
lated to a continuous instance. We have the following theorem.

Theorem 2. 2TupleGC’ is NP-complete.

Proof. It is clear that the problem is in NP, as π ∈ Pm is a polynomially checkable
certificate.

We reduce from 2TupleGC. Let L = (a1, b1), . . . , (am, bm) ∈ N×N be an instance of
2TupleGC. We only need to deal with the case of L being non-continuous, as otherwise
we simply map L to itself. Let A = {ai | i ∈ I} and B = {bi | i ∈ I}. If L is non-
continuous, then either (1) there exists a partition of [m] into I and J, and α ∈ N such
that ai < α < a j for every i ∈ I and j ∈ J, (2) there exists a partition of [m] into I and J,
and α ∈ N such that bi < α < b j for every i ∈ I and j ∈ J, (3) A and B are the discrete
intervals A = {min A, . . . , ,max A} and B = {min B, . . . ,max B}. Furthermore, we can
decide if we are in case 1, 2 or 3 in time O(m log m) by sorting A and B.

If (1) or (2) holds, then for every i ∈ I and j ∈ J we have that |ai − a j|+ |bi − b j| ≥ 2,
which implies that L is a no-instance. If (3) holds, we map L to L′ := (a′1, b

′
1), . . . , (a′m, b

′
m)

by shifting the instance so that the minimum among the first and second coordinates is
one; i.e.,

(a′1, b
′
1), . . . , (a′m, b

′
m) = (1+a1−min A, 1+b1−min B), . . . , (1+am−min A, 1+bm−min B).

Note that the encoding size of L′ is at most the encoding size of L and that the mapping
can be computed in polynomial time. Furthermore, for every i, j ∈ [m] we have that

|a′i − a′j| + |b
′
i − b′j| = |1 + ai −min A − (1 + a j −min A)| + |1 + bi −min B − (1 + b j −min B)|

= |ai − a j| + |bi − b j|,

so L is a yes-instance if and only if L′ is a yes-instance. This concludes the proof. ⊓⊔

2.4 Application: Swap Gray Codes for Permutations

Here we show that 2TupleGC’ can be used as a source problem for establishing the
hardness of other Gray coding problems. Consider the following problem.

PermSwapGC
Input: A list of m permutations of length n, τ1, . . . , τm ∈ Pn.
Question: Is there a permutation π ∈ Pm such that τπ(i) and τπ(i+1) differ in an

adjacent transposition for every i ∈ [m − 1]?

Theorem 3. PermSwapGC is NP-complete.

Proof. It is clear that the problem is in NP. To see hardness, we reduce from 2TupleGC’.
Let L = (a1, b1), . . . , (am, bm) ∈ N×N be a list of continuous 2-tuples. Let a = max

i∈[m]
ai

and b = max
i∈[m]

bi. Given a 2-tuple (x, y) ∈ [a]× [b], we define a permutation τ := ϕ(x, y) ∈

Pa+b+2 as the unique permutation of length a + b + 2 such that τ−1(a + b + 1) = x,
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τ−1(a + b + 2) = a + y, and after the removing symbols (a + b + 1) and (a + b + 2) from
τ, we get the identity permutation 1 · · · (a + b).

We map the instance, L to L′ = ϕ(a1, b1), . . . , (am, bm). Note that every permutation
has encoding size of (a + b + 2) log(a + b + 2) ≤ (2m + 2) log(2m + 2) and that ϕ can be
implemented in polynomial time.

Note that the permutations produced can only differ on swaps involving either the
symbol (a+b+1) or the symbol (a+b+2). Furthermore, for two permutations produced
by ϕ, say τ, ρ ∈ ϕ([a]× [b]), they differ if and only if the positions of symbol (a+ b+ 1)
are adjacent or the positions of the symbol (a + b + 2) are adjacent, but not both; i.e.,

|τ−1(a + b + 1) − ρ−1(a + b + 1)| + |τ−1(a + b + 2) − ρ−1(a + b + 2)| = 1. (1)

Finally, if τ = ϕ(x, y) and ρ = ϕ(z,w), the left side of (1) is |x−z|+ |y−w|. Consequently,
L is a yes-instance if and only if L′ is a yes-instance, and the theorem follows. ⊓⊔

We will see an alternative proof of Theorem 3 in later subsections.

14238567

12438567

12348567
12345867

14235687

12435687

12345687

14235678

12345678

41238567
41235867
41235687
41235678(1, 4)

(1, 3)
(1, 2)
(1, 1)

(2, 4)
(2, 3)
(2, 1)

(3, 3)
(3, 1)

(4, 4)
(4, 3)
(4, 2)
(4, 1)

L L′

→
→
→
→
→
→
→
→
→
→
→
→
→

ϕ

(a) The reduction ϕ.

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1) (3, 3)

(4, 1) (4, 2) (4, 3) (4, 4)

4123,
8567

1423,
8567

1243,
8567

1234,
8567

4123,
5867

1234,
5867

4123,
5687

1423,
5687

1243,
5687

1234,
5687

4123,
5678

1423,
5678

1234,
5678

(b) The corresponding grid graph.

Fig. 1: The reduction used in Theorem 3, where L is an instance of 2TupleGC’ and L′

has the corresponding permutations in (a), with the resulting grid graph in (b).

3 A Second Source for NP-Completeness

While 2TupleGC’ is a useful source problem, we find it convenient to introduce another
NP-complete Gray coding problem for subsequent reductions. Recall that the binary re-
flected Gray code lists all 2n bitstrings so that consecutive strings differ in one bit. Thus,
it is natural to ask which bitstrings have bitflip Gray codes (i.e., Q1 from Section 1).
We’ll show that this BitstringGC problem is hard by a reduction from 2TupleGC’.

BitstringGC
Input: A list of m bitstrings of length n, x1, . . . , xm ∈ {0, 1}n.
Question: Is there a permutation π ∈ Pm such that xπ(i) and xπ(i+1) differ in a bitflip

for every i ∈ [m − 1]?
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Theorem 4. BitstringGC is NP-complete.

Proof. It is clear that BitstringGC is in NP, as the permutation π ∈ Pm is a polynomially
checkable certificate. Thus, it only remains to prove NP-hardness.

We reduce from 2TupleGC’. Let L = (a1, b1), . . . , (am, bm) ∈ N × N be a list of
continuous 2-tuples. Let a = max

i∈[k]
and b = max

i∈[k]
bi. For each tuple (ai, bi) we define the

bitstring xi ∈ {0, 1}a+b as xi := 0ai 1a−ai 0bi 1b−bi . Since L is continuous, we have a + b ≤
2m, and consequently, the mapping of the 2TupleGC’ instance L to the BitstringGC
instance L′ := x1, . . . , xm runs in time polynomial in the encoding size of L.

We now show that I is a yes-instance for 2TupleGC’ if and only if I′ is a yes-
instance for BitstringGC. Note that for i, j ∈ [k] the bitstrings xi = 0ai 1a−ai 0bi 1b−bi and
x j = 0a j 1a−a j 0b j 1b−b j differ in a single bitflip if and only if |ai−a j|+ |bi−b j| = 1. Hence,
for every permutation π ∈ Pm and every i ∈ [m− 1] it holds that xπ(i) and xπ(i+1) differ in
a single bitflip if and only if |ai − a j| + |bi − b j| = 1. This concludes the proof. ⊓⊔

Note that the mapping used in Theorems 4 and 3 is not polynomial time without
continuity. This can be easily seen, in the non-continuous input 2-tuple (n, n) which
needs O(log n) bits to be represented, but it is mapped to the bitstring 02n that needs
O(n) bits.

A similar reduction idea has been also used to show that solving the Rubik’s cube
optimally is hard [5].

4 Polynomial-time Gray Code Reductions via Hypercubes

There is a natural graph associated with every Gray code: represent each object with a
vertex, and join two vertices by an edge if their objects differ by a flip. These graphs are
known as flip graphs, and a Gray code provides a Hamilton path. For example, the flip
graph for bitstrings of length n and bitflips is the n-dimensional hypercube or n-cube.

Let Y be a type of combinatorial object, and Ym be those objects of size m. In ad-
dition, let F : Y → Y be a type of flip operation acting on objects of type Y without
changing their size. In particular, let Fm : Ym → Ym be the flip operation applied to the
objects of size m. To prove that the Gray coding problem on Y and F is hard, we will
use a new type of reduction defined below.

Definition 1. A polynomial-time Gray code reduction via hypercubes to Y and F is a
poly-time computable function f : Bn → Ym that maps bitstrings of length n to an
object of type Y and size m, such that two binary string b ∈ Bn and b′ ∈ Bn differ in a
single bit if and only if the corresponding objects f (b) ∈ Ym and f (b′) ∈ Ym differ by a
flip of type Fm.

For brevity, we use the term Gray code reduction for polynomial-time Gray code
reduction via hypercubes in the rest of the document. An immediate consequence of
Definition 1 is the following remark.

Remark 1. If there is a Gray code reduction from objects Y and flips F, then the flip
graph (Ym, Fm) contains an induced subgraph that is isomorphic to hypercubes of di-
mension n inside the flip graph of dimension m associated with Y . Moreover, we can
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efficiently find induced subgraphs of the flip graph that are isomorphic to any induced
subgraph of the hypercube.

We now present our main theorem for proving that various Gray coding problems
are NP-hard.

Theorem 5. If there is a Gray code reduction f : Bn → Ym for flips of type Fm, then
the following Gray coding problem is NP-hard.

Gray Coding Problem for Objects Ym and Flips Fm

Input: A list L of elemenets in Ym.
Question: Is there a Fm flip Gray code for L?

Proof. Consider a list of binary strings B ⊆ Bn, and the associated bitflip Gray code
problem BitstringGC(L). If there is a Gray code reduction f : Bn → Ym for flips of
type Fm, then consider the following list

L := { f (b) | b ∈ B}. (2)

By definition of a Gray code reduction, we know that b ∈ Bn and b′ ∈ Bn differ in a
single bit if and only if f (b) ∈ Ym and f (b′) ∈ Ym differ by a flip of type Fm. Therefore,
BitstringGC(L) is a yes-instance, if and only if, GrayCoding(L, Fm) is a yes-instance.
Also, note that L can be created in polynomial-time with respect to the size of the
original input B. Since BitstringGC is NP-hard, we conclude that GrayCoding(L, Fm)
is NP-hard. ⊓⊔

4.1 Example: (Non-Crossing) Set Partitions by Refinement

To visualize Theorem 5, let’s consider a Gray coding problem that has not been posed
in the literature. Let S×n be the set of non-crossing set partitions of [n], which are set
partitions in which no pair of subsets cross (i.e., if a and b are in one subset and x and
y are in another, then a < x < b < y is not true). Two different set partitions differ by a
refinement if one can be obtained from the other by splitting a single subset or merging
two subsets. The corresponding flip graph is S×n .

NCSetPartRefGC
Input: A list L of non-crossing partitions from S×n .
Question: Is there a refinement Gray code for L?

A Gray code reduction from BitstringGC to NCSetPartRefGC problem is shown
in Figure 2. In particular, we map binary strings of length n to non-crossing set partitions
of [n + 1] as follows: if bi = 0, then i + 1 is a singleton subset, and otherwise i + 1 is
in the same subset as 1. Thus, toggling bi is equivalent to moving element i + 1 in or
out of 1’s subset, and this move is a refinement. As a result, the mapping provides an
induced subgraph of S×n+1 that is isomorphic to Hn (as highlighted). Moreover, f can
be computed in polynomial-time for each binary string, so we can efficiently find an
induced subgraph of S×n+1 that is isomorphic to any induced subgraph of Hn. Hence, we
can conclude that NCSetPartRefGC is NP-hard. Careful readers may have noticed that
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hardness also follows for SetPartRefGC (i.e., NCSetPartRefGC but on set partitions)
since every non-crossing set partition is also a set partition. Both problems are also
clearly in NP, so we have the following theorem.

Theorem 6. NCSetPartRefGC and SetPartRefGC are NP-complete.

000

001

101

111

110

100

011

010

(a) The 3-cube H3.

B3 f S ⊆ S×4
000 → 1|234
001 → 14|23
010 → 13|24
011 → 134|2
100 → 12|34
101 → 124|3
110 → 123|4
111 → 1234

(b) Mapping. (c) The flip graph S×4 with S×4 [S ] highlighted.

Fig. 2: A Gray code reduction from BitstringGC to NCSetPartRefGC. The one-to-one
function f : Bn → S

×
n+1 maps binary strings to non-crossing set partitions in such a way

that b ∈ Bn and b′ ∈ Bn differ by a bit-flip, if and only if, f (b) ∈ S×n+1 and f (b′) ∈ S×n+1
differ by refinement. In (c) we use ◦, ◦, ◦, ◦ for 1, 2, 3, 4 and the non-singleton subsets
are surrounded.

In subsequent sections, we visualize our Gray code reductions by illustrating the
induced subgraph isomorphic to a hypercube. In other words, we illustrate the list L =
{ f (b) | b ∈ Bn} (i.e., (2) for the full set of binary strings) and argue that the mapping f
can be computed in polynomial-time.

For the sake of comparison, the approach taken in Sections 2.4 and 3 can be defined
as a polynomial-time Gray code reduction via grid graph, where the source problem
was 2TupleGC’ rather than BitstringGC.

5 Combinations

A combination is a subset of [n] of a fixed size k, where 0 ≤ k ≤ n. We denote the set of
all combinations of [n] of fixed size k by Bk

n. Commonly, it is represented as a binary
string b1b2 . . . bn where bi := 1 if i is in the set, otherwise bi := 0. The first transposition
Gray code for combinations appeared in [36]. Subsequently, many Gray code results
were published in the literature notably [8], [2], and [28].

CombSwapGC/CombTransGC/CombCompGC/CombRevGC
Input: A list L of combinations from Bk

n.
Question: Is there a swap / transposition / substring complement/ substring reversal

Gray code for L?
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Theorem 7. CombSwapGC,CombTransGC,CombCompGC,CombRevGC are NP-hard.

Proof. We use a Gray code reduction; see Figure 3. For CombSwapGC, we define the
following list of combinations from Bn

2n

L := {c1c2 . . . c2n−1c2n | c2i−1c2i ∈ {01, 10} for 1 ≤ i ≤ n }, (3)

where each bit bi is implemented by the pair c2i−1c2i. We map each binary string of
length n to a combination of length 2n with n many 1s as

f (b1b2 · · · bn) := c1c2 . . . c2n−1c2n, where c2i−1c2i = 01 if bi = 0 or 10 if bi = 1. (4)

To understand this construction, note that elements of L can only be modified using
the intended swaps within a single pair (i.e., c2i−1c2i) rather than between the pair (c2ic2i+1).
Similar arguments for CombTransGC show that the intended swaps are the only trans-
positions that can modify members of L.

010101

010110

100110

101010

101001

100101

011010

011001

000

001

101

111

110

100

011

010

(a) c1c2c3c4c5c6 from (3) with
swaps or transpositions.

01101101

01101110

10101110

10110110

10110101

10101101

01110110

01110101

000

001

101

111

110

100

011

010

(b) c1c2 1 c3c4 1 c5c6 from (5)
with substring complements.

0101010101

0101010110

1001010110

1001100110

1001100101

1001010101

0101100110

0101100101

000

001

101

111

110

100

011

010

(c) c1c2 01 c3c4 01 c5c6 from
(6) with substring reversals.

Fig. 3: Gray code reduction to prove the NP-hardness for combinations.

The list in (3) does not establish the result for CombCompGC. This is because one
substring complement can modify multiple pairs of bits e.g., 01 10 gives 10 01. To avoid
this, we insert a padding bit 1 between pairs and use these combinations from B2n−1

3n−1

L := {c1c2 1 c3c4 1 . . . 1 c2n−1c2n | c2i−1c2i ∈ {01, 10} for 1 ≤ i ≤ n }. (5)

The 1 bits of padding prevent any substring complement of length > 2 from modifying
elements of L; it is also clear that substring complements of length 1 cannot modify L.
As a result, the only valid complements are internal to the pair (c2i−1c2i).

Similarly, the list in (5) does not establish the result for CombRevGC. This is be-
cause a single substring reversal can reverse multiple pairs of bits e.g., reversing 01 1 01
gives 10 1 10. To avoid this, we use two bits of padding 01 and the following list of
combinations from B2n−1

4n−1

L := {c1c2 01 c3c4 01 . . . 01 c2n−1c2n | c2i−1c2i ∈ {01, 10} for 1 ≤ i ≤ n }. (6)
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The 01 padding ensures that the only substring reversals that can modify the elements
of L are the intended swaps within the pair (c2i−1c2i).

Similar to equation 4, we can efficiently map a binary string b1b2 . . . bn with com-
binations of length 3n − 1 with 2n − 1 many 1s and of length 4n − 1 with 3n − 1 many
1s, comprising of padding bits for CombCompGCand CombRevGC, respectively. ⊓⊔

6 Problems on Permutations including Pattern-Avoidance

For the set of permutations Pn, we consider an ordering where two consecutive per-
mutations differ by swaps. Gray codes then emerged involving transpositions [3], [31],
as well as prefix-reversals [26] and prefix shifts [4] and [30]. Given a permutation
π = p1 · · · pn with a substring pi · · · p j where pi > pi+1 · · · p j , a right-jump of the value
pi by j− i steps is a cyclic left rotation of this substring by one position to pi+1 · · · p j pi.
Analogously, we define a left-jump. Jump Gray codes were given in [12].

PermSwapGC/PermTransGC/PermRevGC/PermRotGC/PermJumpGC
Input: A list L of permutations from Pn.
Question: Is there a swap / transposition / substring reversal/ substring rotation/

jump Gray code for L?

Theorem 8. PermSwapGC,PermTransGC,PermRevGC,PermRotGC,PermJumpGC are
NP-hard.

Proof. We use a Gray code reduction; see Figure 4. Let b1b2 · · · bn is a bitstring of
length n. For PermSwapGC, we use the following list of permutations from P2n

L := {p1 p2 . . . p2n−1 p2n | p2i−1, p2i ∈ {2i − 1, 2i} for 1 ≤ i ≤ n }, (7)

where each bit bi is implemented by the pair (p2i−1, p2i). We map each binary string of
length n to a permutation of length 2n,

f (b1 · · · bn) := p1 . . . p2n−1 p2n, where p2i−1 p2i = 2i−1 2i if bi = 0 or 2i 2i−1 if bi = 1.
(8)

The elements of L can only be modified using the intended swaps within the pair (p2i−1, p2i).
Similarly, the intended swaps are the only transpositions, substring reversals, substring
rotations, and jumps that can modify the elements of L. Note that unlike Theorem 7, we
need not redefine the set L for different operations. ⊓⊔

A peak in a permutation p1 · · · pn is a triple pi−1 pi pi+1 with pi−1 < pi > pi+1. A set
of permutations without a peak, also called a peakless permutation is denoted by P∨n .
We consider the following Gray coding problem on peakless permutations.

PeakPermJumpGC
Input: A list L of permutations from P∨n .
Question: Is there a jump Gray code for L?

Theorem 9. PeakPermJumpGC is NP-hard.
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(a) p1 p2 p3 p4 p5 p6 from (7) with swaps.
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(b) p1 p2 p3 p4 from jumps.

Fig. 4: Gray code reductions to prove the NP-hardness for permutations.

Proof. We use a Gray code reduction; see Figure 4. We define the list of peakless per-
mutations as P∨n := {p1 p2 · · · pn | ∄i where pi−1 < pi > pi+1}.

We map a binary string b2 · · · bn to a permutation π ∈ P∨n as follows: we start with
1 and then insert the values i = 2, . . . , n one by one, either at the leftmost or rightmost
position, depending on whether the bit bi is 1 or 0, respectively. Thus a bitstring of
length n maps to a permutation of length n + 1 and two permutations in P∨n differ in a
jump if and only if the mapped bitstrings differ in a bitflip. ⊓⊔

For n ≥ k, let π ∈ Pn and τ ∈ Pk. We say that π contains τ, if and only if π = p1 · · · pn

contains a subpermutation pi1 · · · pik with the same relative order as the elements in τ.
Otherwise, p avoids τ. We denote Pn(τ) as the set of all permutations of length n that
avoids τ. Moreover, Pn(τ1∧· · ·∧τℓ) is the set of permutations of length n avoiding each
of the patterns τ1, . . . , τℓ. Gray codes for pattern-avoiding permutations appeared in [7],
[1], [12].

Remark 2. Peakless permutations of [n] are (132 ∧ 231)-avoiding permutations of [n].

We extend Theorem 9 to multiple permutation patterns consisting of ANDs.

Corollary 2. For a set of permutation patterns {τ1, τ2, . . . , τℓ}, if every τi contains a
peak, then the Gray code problem is NP-hard for on jumps the list of permutations
from Pn(τ1 ∧ . . . ∧ τℓ).

7 Problems on Graphs

In this section, we discuss some graph-related problems. Our reductions are based on
a particular graph namely, the diamond-path graph. Informally, the n-th diamond-path
graph consists of n squares joined through edges. More formally, we define the graph
Dn by considering the vertex set {N, S , E,W} × [n], and the edge set {NiEi ∪ NiWi ∪

S iEi ∪ S iWi | i ∈ [n]} ∪ {EiWi+1 | i ∈ [n − 1]}; see Figure 5a.
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(c) Perfect matchings of D3.

Fig. 5: Gray code reductions for set partitions and graphs.

7.1 Spanning Trees

A spanning tree of a graph G is a connected acyclic subgraph of G. We denote the
set of all spanning trees of a fixed graph G by STG. We say that two spanning trees
T,T ′ of G differ in an edge exchange if they differ in exactly two edges; i.e., there exist
edges e ∈ T \ T ′ and f ∈ T ′ \ T such that T = T ′ + e − f . Gray codes for spanning
trees under edge exchanges have been widely studied from both the combinatorial and
computational point of view [19,21,25,32].

SpanningTreeGC
Input: A list L of spanning trees from STDn .
Question: Is there an edge-exchange Gray code for L?

Theorem 10. SpanningTreeGC is NP-hard.

Proof (of Theorem 10). We use a Gray code reduction; see Figure 5b. For bitstrings in
Bn, we define the following list of spanning trees of Dn

L := {WiS i | i ∈ [n]} ∪ {EiS i | i ∈ [n]} ∪ {EiWi+1 | i ∈ [n − 1] ∪
⋃

i:bi=0

{WiNi} ∪
⋃

i:bi=1

{EiNi}.

In other words, a spanning tree in L contains all the edges between diamonds, the edges
that are incident on S i vertices, and to join Ni, we use either the edge Wi or Ei, depending
on the value of bi. Therefore, two spanning trees Tb,Tb′ ∈ L differ in an edge exchange
if and only if b, b′ ∈ Bn differ in a bitflip. ⊓⊔

7.2 Perfect Matchings

A perfect matching of a graph is a set of edges M ⊆ E such that every vertex is incident
to exactly one edge in M. We denote the set of all perfect matchings of a fixed graph G
by PMG. We say that two perfect matchings M,M′ of G differ in an alternating cycle if
their symmetric difference forms a cycle in G. Every graph with a perfect matching has
an alternating cycle Gray code for PMG that can be efficiently computed [19,25].
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PerfectMatchingGC
Input: A list L of perfect matchings from PMDn .
Question: Is there an alternating cycle Gray code for L?

Theorem 11. PerfectMatchingGC is NP-hard.

Proof (of Theorem 11). We use Gray code reductions; see Figure 5c. For bitstrings in
Bn, we define the following list of perfect matchings of Dn

L :=
⋃

i:bi=0

{WiNi, EiS i} ∪
⋃

i:bi=1

{EiNi,WiS i}.

There are two possible choices of perfect matchings for every diamond in Dn. There-
fore, two perfect matchings Mb,Mb′ ∈ L differ in an alternating cycle if and only if
b, b′ ∈ Bn differ in a bitflip. ⊓⊔

Theorems 10 and 11 also extend the hardness when we are given the host graph G as
input and ask for edge-exchange or alternating cycles Gray codes for lists of spanning
trees or perfect matchings, respectively, of G.

8 Final Remarks

We proved that the Gray coding problems are NP-complete for various classical ob-
jects. Future work could involve investigating optimization and approximation variants.
Furthermore, our techniques apply to many other objects, for example, those involving
geometry, that we plan to explore in the full version of this paper.

We note that we were unable to establish NP-hardness for certain subset problems
using grid or hypercube reductions. These problems include operations that do not sup-
port independent involutions. In other words, there is no way to make and unmake mul-
tiple local changes, which is a hallmark of hypercube reductions. It is also important to
note that some subset problems are poly-time solvable (e.g., those associated with de
Bruijn sequences and universal cycles).
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