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Abstract—Computing workflows in heterogeneous multiproces-
sor systems are frequently modeled as directed acyclic graphs of
tasks and data blocks, which represent computational modules
and their dependencies in the form of data produced by a
task and used by others. However, for some workflows, such
as the task schedule in a digital signal processor may run out of
memory by exposing too much parallelism. This paper focuses on
the data allocation and task scheduling problem under memory
constraints, and concentrates on shared memory platforms. We
first propose an integer linear programming model to formulate
the problem. Then we consider the problem as an extended
flexible job shop scheduling problem, while trying to minimize
the critical path of the graph. To solve this problem, we propose a
tabu search algorithm (TS) which combines several distinguished
features such as a greedy initial solution construction method
and a mixed neighborhood evaluation strategy based on exact
evaluation and approximate evaluation methods. Experimental
results on randomly generated instances show that the the pro-
posed TS algorithm can obtain relatively high-quality solutions
in a reasonable computational time. In specific, the tabu search
method averagely improves the makespan by 5-25% compared
to the classical load balancing algorithm that are widely used in
the literature. Besides, some key features of TS are also analyzed
to identify its success factors.

Index Terms—Task scheduling; Data allocation; Heterogeneous
multiprocessor; Tabu search

I. INTRODUCTION

A
Digital signal processor (DSP) is a specialized mi-

croprocessor chip with delicately refined architecture

for the operational requirements of digital signal processing

(Chantem et al., 2010). DSPs are fabricated on metal ox-

ide semiconductor (MOS) integrated circuit chips. They are

widely used in audio signal processing, digital image process-

ing, speech recognition systems, high performance computing

centers, and in common consumer electronic devices such

as mobile phones, notebook computers, smart watches, and

intelligent Wearable device (Baruah and Fisher, 2006).

There are different types of cores and memories on DSP

chip, where the core is the unit that performs calculations and

memory is the unit that stores data. Similar to the description

in Chen et al. (2012), core types include general purpose core

and synergistic processor core, and memory types include

high-speed memory and low-speed memory such as DDR. The
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cores are organized according to the cluster and group levels,

where each group corresponds to a local high-speed memory,

while other high-speed memory and low-speed memory are

shared globally.

Parallel computing tasks on multiprocessor systems are

often modeled by Directed Acyclic task Graphs (DAG),

where nodes and edges respectively represent tasks and the

dependencies between tasks (Chiang et al., 2006; Du et al.,

2013). Given a series of tasks to be executed on a DSP

processor, and the data blocks generated by tasks, i.e., the

dependencies between tasks, the task scheduling problem is

to assign each task to the cores, specify the storage location

for the data block, and also determine the execution order of

the tasks on each core, where the objective is to minimize

the total completion time of all tasks and the usage of high-

speed memory, and improve the utilization of the cores and

memories.

The job shop scheduling problem is a fundamental problem

in the fields of intelligent manufacturing and high-performance

computing, which mainly studies how to schedule priority

resources to execute multiple tasks in sequence, so that the

maximum completion time of all tasks is minimized. For

example, when a chip foundry produces chips, each wafer

undergoes multiple processes such as photolithography and

etching on different machines sequentially (Yin et al., 2018).

In some large-scale parallel computing scenarios, there are

dependencies between computing tasks, and the input of

the successor task is the output of the predecessor task

(Ilavarasan and Thambidurai, 2007).

The scheduling problems in the actual production process

are often more complex, since there are various constraints

from different dimensions need to be considered apart from

scheduling computing resources. For example, when multi-

core processors in a cloud computing data center are shared

by a large number of parallel tasks, it is necessary to allo-

cate cores to tasks and schedule tasks simultaneously under

energy constraints or performance constraints (Kang et al.,

2011). In parallel computing scenarios, in addition to the

occupancy of computing resources, it is also necessary to

consider that the memory resources occupied by concurrent

computing tasks cannot exceed the maximum capacity limit.

Heterogeneous chips integrate different computing units to

allow each computing unit to perform compatible tasks, which

arises higher requirements for task scheduling since there are

more complex constraints among different types of memories

(Kang and Dean, 2010).

http://arxiv.org/abs/2206.05268v1
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As heterogeneous processors is prevalent due to its high

efficiency, the same type of operations can be processed

by different cores with different processing time and data

capacity. Furthermore, different components of a distributed

shared-memory show significant heterogeneity in data access

time (Lakshmanan et al., 2009; Ouni et al., 2011; Wang et al.,

2014). Therefore, several important issues are arisen and need

to be resolved, i.e., how to assign each computational task

to a proper processor; how to allocate each datum to a

proper memory; and how to sequence the operations for both

processing task and retrieving data so that certain constraints

can be satisfied and the maximum completion of all the

tasks can be minimized. This problem is formally called as

heterogeneous data allocation and task scheduling problem

(HDATS).

II. LITERATURE REVIEW

of scheduling large-scale scientific workflows onto dis-

tributed resources where the workflows are data- intensive,

requiring large amounts of data storage,

Processors and memories have always been a limited and

valuable physical resources for large computations which are

summarized in Ravi et al. (1970). The problem of scheduling

large-scale scientific workflows with distributed resources has

been identified by Ramakrishnan et al. (2007). Their work

was extended in Peris et al. (2016) that proposed genetic

algorithms to handle the computing tasks. Chen et al. (2012)

introduced an online heterogeneous dual-core scheduling al-

gorithm for dynamic workloads with real-time constraints,

and carried out a series of extensive experiments to compare

different workloads and scheduling algorithms. This problem

also appears in sparse direct solvers, as studied by Rouet et al.

(2012) who analyzed the effect of processor mapping on

memory consumption for multi-frontal methods. Based on the

research of sparse direct solvers in Liu (1987), Aupy et al.

(2017) proposed a heuristic method with problem related

knowledge to reduce the minimum peak memory. Zhao et al.

(2019) extended the hypergraph partition-based scheduling

method and adopted an improved partition technique to al-

leviate data traffic in distributed data centers.

Du et al. (2013) proposed an efficient loop scheduling

algorithm to tackle the problem of expensive write opera-

tions on non-volatile main memory for chip multiprocessors,

which reduced the number of write operations on non-volatile

memories, the processing time, and the energy consumption.

Sbı̂rlea et al. (2014) proposed a bounded memory scheduling

algorithm for parallel workloads denoted by dynamic task

graphs, where an upper bound is imposed on the peak memory

of the computing environment. Sergent et al. (2016) studied

the combination between a task-based distributed application

and a run-time system to control the memory subscription

levels during the processing period. Beyond that, Tsai et al.

(2013) proposed an improved differential evolution algorithm

(IDEA) based on the cost and time models to optimize

task scheduling and resource allocation on cloud computing

environment. Ergu et al. (2013) proposed a model for task-

oriented resource allocation in a cloud computing environ-

ment. where the resource allocation task is ranked by the pair-

wise comparison matrix technique and the analytic hierarchy

process giving the available resources and user preferences.

Praveenchandar and Tamilarasi (2021) presented an improved

task scheduling and power minimization approach for effi-

cient dynamic resource allocation method, which combines

a prediction mechanism and dynamic resource table updating

algorithm.

There are also research of reducing the task scheduling

problem in DSP to the flexible job shop scheduling prob-

lem. The FJSP is a well-studied combinatorial optimization

problem, which was introduced by Brucker and Schlie (1990)

as an extension of the job shop scheduling problem. For the

FJSP with makespan criteria, exact approaches were proposed

by Özgüven et al. (2010) and Roshanaei et al. (2013), who

developed mixed-integer linear programming (MILP) mod-

els. Another MILP was presented in Birgin et al. (2014) for

the FJSP with an extension that allows precedence relations

between operations of a job to be given by an arbitrary

directed acyclic graph. Hansmann et al. (2014) combined a

MILP with a branch and bound algorithm to solve the FJSP

with restricted machine accessibility. Zhang and Zhou (2017)

proposed a method based on a two-stage strategy to maximize

task scheduling performance and minimize non-reasonable

task allocation in clouds, where a job classifier motivated by

a principle of Bayes classifier and a dynamic match strategy

are utilized. For the task scheduling in virtual controllers

and multiple clusters of remote radio heads, Xia et al. (2019)

translated it into a matroid constrained submodular maximiza-

tion problem and propose heuristic algorithms to find solutions

with half approximation. Fu et al. (2020) introduced an unified

graph to model the map task scheduling and the reduce

task scheduling respectively, and transformed the problem to

the well-known graph problem: minimum weighted bipartite

matching.

In fog computing based on containers for smart manufac-

turing, Yin et al. (2018) built a new task-scheduling model

by considering the role of containers, and designed a task-

scheduling algorithm and a reallocation mechanism to reduce

task delays in accordance with the characteristics of the con-

tainers. Yuan et al. (2018) proposed a spatial task scheduling

and resource optimization method to minimize the total cost

of their provider by cost-effectively scheduling all arriving

tasks of heterogeneous applications to meet tasks’ delay-bound

constraints in distributed green cloud data centers. Hu et al.

(2020) studied the task scheduling problem to minimize the

schedule length of parallel applications while satisfying the

energy constraints in heterogeneous distributed systems. For

the fairness-aware task scheduling and resource allocation

in unmanned aerial vehicle-enabled mobile edge computing

networks, Zhao et al. (2021) proposed iterative algorithm to

deal with them in a sequence and a penalty method-based

algorithm to reduce computation complexity. Zhuge et al.

(2012) introduced a polynomial-time algorithm based on dy-

namic programming approach, and a global data allocation

algorithm, and a heuristic maximal similarity scheduling to

reduce memory traffic and minimize the cost of accessing

memory. Zuo et al. (2013) proposed a self-adaptive learning
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Fig. 1. The architecture of the heterogeneous distributed shared-memory
multiprocessor system

particle swarm optimization based scheduling approach for

hybrid infrastructure as a service cloud.

For the data allocation and task scheduling on heteroge-

neous multiprocessor systems, the main purpose is to find a

schedule for the tasks and memories to guarantee that at any

time during the execution the memory usage does not exceed

its maximum capacity. To solve this problem, we propose a

tabu search algorithm which combines several distinguished

features such as a greedy and random initial solution con-

struction method and a mixed neighborhood evaluation strat-

egy based on exact evaluation and approximate evaluation.

Experimental results on randomly generated instances show

that the the proposed TS algorithm can obtain relatively good

solutions in a reasonable computational time. We also analyze

some key features of TS to identify the performance of the

tabu search algorithm.

The rest of the paper is organized as follows: Section

III describes the problem and its mathematical formulation.

Section IV presents the details of the proposed tabu search

method and each of its components. Section V reports the

computational results and analyze its key features, and Section

VI concludes the paper and suggests the future research

directions.

III. PROBLEM DEFINITION AND FORMULATION

A. Problem description

The architecture model of the DSP in this paper is a

heterogeneous distributed shared-memory multiprocessor sys-

tem which is described in Fig. 1. The architectural scheme

encompasses a set P of n connected heterogeneous pro-

cessors, i.e., P = {P1, P2, . . . , Pn}. Each processor Pi is

tightly affiliated with its own local memory Mi, and all local

memories of the processors constitute a distributed physical

memory which are globally shared. For instance, M1 is the

local virtual memory of processor P1, while M2 and M3 are

remote physical memories. For processor P2, M2 is the local

memory, while M1 and M3 are remote memories. Since all the

distributed memories are integrated into a global shared space,

every processor has full memory access right to read from or

write to a memory. Note that different processors’ accesses

operation on the same memory require different times because

the structure of memory paradigm is non-uniform.

Given a direct acyclic task graph DAG G = (V,E), V is

the node set and E is the edge set, nodes s, e ∈ V represent

11
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4 7
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data block

job-job dependency

job-data dependency

starting node

ending node

Fig. 2. An illustrative example with 12 tasks and 9 data blocks

the starting and ending nodes, respectively. In the considered

problem, by formulating a memory access operation as a node,

the traditional DAG can be extended to a memory-access data

flow graph (MDFG). Fig. 2 gives an illustrative example of the

HDATS problem, where cycle blocks represent the tasks and

square blocks represent the data blocks depending on them or

being depended.

A MDFG is a node-weighted directed graph ex-

tended from a DAG which is described by G
′

=
(V1, V2, . . . , E,D, var, P,M,AT,ET ), where the notations

are explained as follows:

• V1 = {v1, V2, . . . , vN1
} represents a set of N1 task nodes.

• V2 = {u1, u2, . . . , uN2
} represents a set of N2 memory

access operation nodes.

• E is a set of edges, where E ⊂ V ×V , V = V1∪V2. An

edge (i, j) ∈ E denotes the dependency between node i

and node j, expressing that task or operation i has to be

executed before task or operation j.

• D is a set of initial input data.

• var : V1 × V2 × D → {0, 1} is a binary mapping

relationship, in which var(v, u, w) represents whether

memory access operation u ∈ V2 is delivering data

w ∈ D for task v ∈ V1.

• P = {P1, P2, . . . , Pn} represents a set of n heteroge-

neous processors.

• M = {M1,M2, . . . ,Mm} represents a set of m local

memories.

• AT is the memory access time functions.

• PT (vi, Pj) = etj(i) is the processing time of task vi
when it is processed on processor Pj .

Therefore, the formal definition of the heterogeneous data

allocation and task scheduling problem is a MDFG with the

aim of seeking a solution denoted by a triple Mem,AS, SC,

in which Mem is a data allocation Mem : D → M , where

Mem(h) ∈ M is the memory to store h ∈ D; AS is a task
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assignment AS : V1 → P , where A(v) is the processor to

execute task v ∈ V1; SC is a schedule, SC : V1 ∪ V2 → R,

i.e., the starting time of each task in V1 and each memory

access operation in V2, such that the amount Ti of data blocks

assigned to memory Mi does not exceed its capacity S(Mi),
i.e., Ti <= S(Mi), and the total completion time of all the

tasks T (G
′

) is minimized. The HDATS problem has been

proved to be NP-hard (Shao et al., 2005).

B. The integer linear programming formulation of HDATS

In this section, the integer linear programming (ILP) formu-

lation for HDATS problem is presented, which consists of a

task assignment with processor constraint, a data allocation

with memory size and concurrency constraints, precedence

constraints, a time constraint. Given a MDFG, the ILP model

of the HDATS problem encompass two major parts, i.e., a

processor assignment and a memory allocation. The processor

assignment is to find a task assignment for all tasks of a given

MDFG, and the memory allocation is to find a data allocation

for all data needed in processing tasks. The objective is to

minimize the maximum completion time of all the tasks, i.e.,

minmax{RT (i, j) + PT (vi, Pj)}, ∀i ∈ [1, N1], j ∈ [1, n]
(1)

1) Task assignment and processor constraints:

n
∑

j=1

S
∑

k=1

xijk = 1, ∀i ∈ [1, N1] (2)

N1
∑

j=1

x
′

ijm ≤ 1, ∀m ∈ [1, S] (3)

N1
∑

i=1

n
∑

j=1

x
′

ijm ≤ 1, ∀m ∈ [1, S] (4)

P (i) =
n
∑

j=1

S
∑

k=1

j × xijk ∀i ∈ [1, N1] (5)

xijk =











1 if task vi starts to process at stage k

on processor Pj ,

0 otherwise.

(6)

x
′

ijm =











1 if task vi is processed at step k

on processor Pj ,

0 otherwise.

(7)

In the processor part, let two binary variables xijk and x
′

ijm

denote whether task vi in an MDFG G
′

starts to execute, and is

processed in stage m on processor Pj , respectively. Constraint

(2) ensures that each task node can start execution in one and

only one stage and one processor. Constraint (3) ensures that

utmost one task is scheduled in any stage on any processor.

Constraint (4) ensures that the number of tasks processed in

each stage does not exceed the number of processors. Formula

(5) defines the processor P (i) that is assigned to task vi.

2) Data allocation and memory constraints:

n
∑

j=1

dhj = 1 ∀h ∈ [1, Nd] (8)

Nd
∑

h=1

d(h)× dhj ≤ Sj ∀j ∈ [1, n] (9)

Mem(h) =

n
∑

i=1

j × dhj ∀h ∈ [1, Nd] (10)

n
∑

j=1

S
∑

k=1

yljk = 1, ∀l ∈ [1, N2] (11)

N2
∑

l=1

y
′

ljm ≤ MA, ∀j ∈ [1, n], ∀m ∈ [1, S] (12)

M(l) =

n
∑

j=1

S
∑

k=1

j × yljk, ∀l ∈ [1, N2] (13)

dij =

®

1 if data i is allocated to memory Mj ,

0 otherwise,
(14)

yljk =











1 if memory access operation node ul starts

to execute in step k on local memory Mj ,

0 otherwise.
(15)

yljk =











1 if memory access operation node ul is

scheduled in step k on local memory Mj ,

0 otherwise.
(16)

In the memory part, let binary variable dij represents whether

data i is allocated to memory Mj . Let binary variables yljk
and y

′

ljk represent whether memory access operation node ul

starts to process, and is scheduled in stage k on memory Mj ,

respectively. Let Sj denotes the capacity of memory Mj . Let

M(l) be the dependency between data allocation and memory

access operations.

Constraint (8) ensures that each data block is allocated

to one and only one local memory. Constraint (9) ensures

that the size of all data allocated in Mj is no larger than

Sj . Constraint (10) denotes the local memory Mem(h) to

store data h. Constraint (11) ensures that each memory access

operation node can start processing in one and only one stage

and one local memory. Constraint (12) ensures that the number

of memory access operation nodes in each stage does not

exceed the access number of a local memory. The memory

module M(l) = Mem(D(l)) for the memory access operation

ul for data D(l) is expressed in constraint (13).
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3) Precedence constraints:

n
∑

j=1

S
∑

k=1

(k +RT (u, j))× xujk ≤

n
∑

j=1

S
∑

k=1

k × xvjk ,

∀e(u, v) ∈ E, ∀u ∈ [1, N1], ∀v ∈ [1, N1]

(17)

n
∑

j=1

S
∑

k=1

(k +RT (u, j))× xujk ≤

n
∑

j=1

S
∑

k=1

k × yvjk,

∀e(u, v) ∈ E, ∀u ∈ [1, N1], ∀v ∈ [1, N1]

(18)

n
∑

j=1

S
∑

k=1

(k +RA t(u, j))× yujk ≤

n
∑

j=1

S
∑

k=1

k × yvjk,

∀e(u, v) ∈ E, ∀u ∈ [1, N1], ∀v ∈ [1, N1]

(19)

n
∑

j=1

S
∑

k=1

(k +RA t(u, j))× yujk ≤
n
∑

j=1

S
∑

k=1

k × xvjk,

∀e(u, v) ∈ E, ∀u ∈ [1, N1], ∀v ∈ [1, N1]

(20)

In a given MDFG, edge e(u, v) ∈ E denotes the precedence

relation from node u to node v. Eqs. (17)–(20) ensure that

each task and memory access operation accurately respect

the precedence constraints. Eq. (17) and Eq. (19) respectively

formulates the precedence relation among tasks and memory

access operations. Eqs. (18) and (20) define the precedence

constraints between tasks and memory access operations. Gen-

erally, the above equations describe that u must be completed

before v can be started.

4) Execution and memory access time constraints:

RT (i, j) =

S
∑

k=1

xijk × PT (vi, Pj), ∀i ∈ [1, N1], ∀j ∈ [1, n]

(21)

S
∑

m=1

x
′

ijm ≤ RT (i, j), ∀i ∈ [1, N1], ∀j ∈ [1, n] (22)

k+RT (i,j)−1
∑

m=k

x
′

ijm = RT (i, j), ∀i ∈ [1, N1], ∀j ∈ [1, n]

(23)

RT t(l, j) =

N1
∑

i=1

Nd
∑

h=1

S
∑

k=1

yljkvar(vi, ul, h)AT (P (i),M)d(h),

∀l ∈ [1, N2], ∀j ∈ [1, n]
(24)

S
∑

m=1

y
′

ljm ≤ RA t(l, j), ∀l ∈ [1, N2], ∀j ∈ [1, n] (25)

k+RT (i,j)−1
∑

m=k

y
′

ljm = RA t(l, j), ∀l ∈ [1, N2], ∀j ∈ [1, n].

(26)

In this part, RT (i, j) is the real processing time of task vi
on processor Pj which is defined in Eq. (21). Constraint (22)

presents the relationship that should be satisfied between x
′

ijm

and RT (i, j) for each task. If xijk = 1, then x
′

ijm must satisfy

the following constraint (23): which means the processing of

a task should not be interrupted.

Let RA t be the real memory access time of a memory

access operation ul on memory Mj which is expressed in

constraint (24), For each memory access operation, the rela-

tionship between y
′

ljm and RA t(l, j) is defined in constraint

(25). which is similar to Eq.(22). If yijk = 1, then y
′

ijm must

satisfy Eq. (26).

IV. ALGORITHM DESCRIPTION

The proposed tabu search algorithm consists of a greedy

initial solution construction procedure, the neighbourhood

structure, the mixed evaluation strategy, and a tabu search

procedure, which are illustrated in details in the following

sections.

A. Greedy construction procedure for initial solution

To efficiently construct a feasible initial solution is primarily

important for starting an heuristic algorithm. In this paper,

we propose a greedy construction procedure according to the

characteristics of the considered problem to generate a feasible

solution with high quality in a short time.

The construction of an initial solution is to assign each

task to a certain core and each data block to a certain block

of memory. However, not all assignments are legal, since

the topological relationship between tasks and the capacity

constraints on each memory needs to be satisfied. Specifically,

some tasks will depend on some other tasks or data blocks.

Therefore, the task must wait for all the tasks it depends on to

complete, and all the data it depends on to be written before

it can start executing. Besides, when allocating memory for

each data block, it is required that the peak memory usage

of each block does not exceed its maximum capacity during

the entire process. In addition, being limited by types and

labels, the candidate cores/memories that are compatible for

each task/data block is just a subset of all cores/memories.

The pseudo code of the greedy construction procedure for

initial solution is presented in Algorithm 1, where the main

idea can be briefly summarized as iteratively selecting the most

important task among the currently unallocated tasks, and then

assigning it to the best core and the best memory for the data

it produces.

1) Preprocessing: Before starting construction, a prepro-

cessing work is required to generate an profitable job se-

quence: First, we use the topological sorting to obtain a legal

topological sequence that only considers job-job constraints

and job-data constraints. Then, we perform dynamic program-

ming procedure on the topological sequence, and calculate

the R, Q, makespan, and Slack values, where taskSet

represents the candidate task list that has not been decided yet.

Subsequently, in line 5, the task in the front of the candidate

list is selected. If there are multiple eligible frontier tasks, we
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Algorithm 1 Greedy construction procedure for initial proce-

dure
1: Input: Problem instance
2: Output: A feasible initial solution Sinit

3: Sinit ← InitS(), taskSet,R,Q, Slack ← Init(), t← −1
4: while taskSet is not empty do

5: t← selectTaskAccodingToRQSlack()
6: availCores← getAvailableCores(t);
7: endT ime← InitET (availCores)
8: for each core c of in avalilCores do

9: N ← getPredecessorsSet(t)
10: startT ime ← max{getF inishT ime(p)|p ∈ N}
11: for each data d of task t do

12: if memory of highType2 is enough at startTime then

13: tryAssignMemory(d, highType2)
14: else if memory highType1 is enough at startTime then
15: tryAssignMemory(d, highType1)
16: else

17: tryAssignMemory(d, lowType)
18: end if

19: end for

20: endT ime[c]← calcuEndT ime(t, c)
21: end for
22: C ← argmin{getEndT ime(c)|c ∈ avalilCores}
23: assignToCore(t, C), updateSolution(Sinit)
24: freshRQSlack(t,C), freshMemory()
25: taskSet← tastSet \ {t}
26: end while

27: return Sinit

select one of them according to the following lexicographical

order:

1) R value;

2) Slack value;

3) the minimum Slack value of the successor jobs.

Given a direct acyclic task graph DAG G = (V,E), nodes

s, e ∈ V represent the starting and ending nodes, respectively.

Let Pi and Si, be the set with the direct predecessors and

successors of node i ∈ V . Let R[i] and Q[i], be the length

of the longest path from starting node s to node i, and node

i to ending node e, respectively, which can be expressed as

follows:

R[i] = max
j∈P [i]

{R[j] + T [j]} (27)

Q[i] = max
j∈S[i]

{Q[j] + T [i]} (28)

Let Slack[i] be the maximum time allowed to be postponed

without deteriorating the maximum completion time of the

whole schedule. By using the definitions of R and Q, we

have:

Slack[i] = Cmax −R[i]−Q[i] (29)

where Cmax denotes the longest length from the starting node

s to ending node e.

After selecting a task, a set of candidate cores called

availCores need to be identified to execute the task according

to its type, and then we need to allocate specific cores for the

task from availCores, and allocate memory for the data blocks

it generates. In general, a map called endTime is established

to indicate the end time when the task is assigned to a certain

core. It traverses all the cores in the candidate core set of the

current task, and then greedily assigns the memory for the

task to generate data. Therefore, the entire time period of the

current task under the different cores are obtained, and finally

select the core and memory assignments that can complete the

task earliest as the assignment result of the task (line 22).

2) Greedy construction: The main steps of the assignment

procedure is as follows:

• For each specific core, we take the maximum warm-up

time of all the data it depends on as the warm-up time

of the task, and take the sum of the loading time of the

data which is calculated by a piecewise function as the

loading time of the task.

• The release time R of the task on the core can be

identified as follows:

– If all predecessor tasks of this task have been as-

signed with cores, then the end time of its predeces-

sor tasks are known, and the maximum value of the

end time of all predecessor tasks is taken as R.

– The current task can start to be executed only when

the last task on its core has been finished. By this

relationship, we can determine the warm-up time and

loading time of the current task.

– The previous task on the core has been finished and

its corresponding data has been moved out, then the

task can start to execute.

• It traverses all the tasks according to the release time R

of the current task.

– If a task has been selected and has not been set to

be executed, and its end time is earlier than the start

time of the current task, it means that the task has

been executed. For each data that the task depends

on, if all the tasks using the data have been executed,

the data can be released, and the release time is

the latest execution completion time of all tasks that

depend on the data.

– If a task has been selected and completed, but the

data has not been moved out yet, if the completion

time of the task is earlier than the start time of the

current task, the task can be set to be completed.

For all data generated by the task, If the data is not

depended on by other tasks, the release time of the

data is the move-out time of the task

• The end time of executing the task and moving out data

can be calculated. The data blocks generated by the task

are sorted according to the minimum slack value of the

task that depends on the data block. Memory is allocated

for the data blocks in topological order. For each data

block generated by the task Data: We first consider global

high-speed memory, then consider consider local high-

speed memory in the same group as the current core,

so as to minimize the warm-up time and move-out time

before moving out. For each piece of candidate memory,

we calculate how much the memory has been used, and

determine whether the current data block can be put in.

The warm-up time is the longest warm-up time, and the

transport time is the sum of the transport time of each

data block of the task.

After the assignment of the task is determined, in the

dynamic update phase, the task is exactly assigned to the

Core and the solution Sinit is updated (line 23), and then the
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memory usage and the R, Q, and Slack values of the node

need to be updated (line 24).

• After the assignment scheme is selected in the specific

assignment stage, the information of the global solution

needs to be updated, and the data block is released and

the memory usage is updated according to the start time

of the task.

• In the preprocessing stage, only the execution time of the

task is considered. As the tasks are continuously assigned

and completed, the corresponding warm-up and move-in

and move-out times are also generated. It is necessary

to update the R, Q, and Slack values of the unassigned

task for the selection in the next round.

After the update is completed, the current selected task is

deleted from the candidate set (line 25), then the next round

of assignment is launched to select the next task and allocate

memory for it in the same way. When the taskSet is empty,

a complete solution is generated. The quality and feasibility

of the solution is guaranteed by the greedy construction

procedure.

B. The proposed tabu search procedure

After an initial solution is obtained through the greedy con-

struction algorithm, the solution is further optimized through

the tabu search procedure.

Base on the business requirements, we need to allocate

each task to a core in its candidate set under the task

topology constraints, and at the same time allocate memory

for the data blocks under the memory capacity constraints.

Considering these two operations simultaneously may lead the

large neighborhood size in local search and complicates the

evaluation of neighborhood actions as well.

For this reason, this paper presents a two-layer based

local search procedure, where the outer layer considers the

scheduling of the task sequence on the machine, and the

inner layer consider the allocation of memory. If the memory

constraints are ignored, the problem can be viewed as the

flexible job shop scheduling problem (FJSP). Therefore, the

classic neighborhood structures of this problem (N7 and k-

insertion) proposed by Ding et al. (2019) can be used as the

neighborhood action of the outer layer.

The tabu search procedure can be briefly summarized as

follows: First, we construct all neighborhood solutions ac-

cording to the N7 and exchange core neighborhood structures.

Then we apply approximate evaluation method on the feasible

neighboring solutions, and select the best K neighborhood

solutions, and evaluate them accurately. Finally, we select

the best solution according to the accurate evaluation results

to replace the current one. Note that in order to avoid the

revisiting the previous searched areas in a short period, we

adopt a tabu table in the local search process, which means

the same neighborhood actions will not be executed within

a certain tabu period. The pseudo code for the tabu search

procedure is given in Algorithm 2.

As described in Algorithm 2, the input is the initial solu-

tion Sinit constructed by the greedy strategy, the maximum

number of unimproved iterations λ, the maximum number of

Algorithm 2 The proposed tabu search procedure for HDATS

1: Input: Greedy Solution Sinit , λ, T̄ , K̄
2: Output: The best found solution S∗

3: Sc ← Sinit , S∗ ← Sinit , N ← ∅, Iter ← 0, Duration← 0
4: while Iter < λ and Duration < T do

5: for each critical task t in Sinit do

6: Nπ ← constructN7(Sinit, t)
7: Nα ← constructChangeCore(Sinit, t)
8: N ← N ∪Nπ ∪Nα

9: N ← checkTabuList(N)
10: if N is empty then

11: S
′

← randomPerturbation(Sc)
12: else

13: topkSet← selectApproximateTopK(N)

14: S
′

← argmin{getMakespan(S)|S ∈ topkSet}
15: end if
16: add Move(Sc, S

′

) to tabu list

17: Sc ← S
′

18: S
′

← memoryReassign(S
′

)

19: if getMakespan(S
′

) < getMakespan(S∗) then

20: S∗ ← S
′

21: Iter ← 0
22: end if

23: end for
24: N ← ∅; Iter ← Iter + 1
25: Duration← getDuration()
26: end while
27: return S∗

accurately evaluated solutions K per iteration, and the longest

duration T of the search. The output of the tabu search is the

best solution S∗ found so far.

First, as commonly used the classical FJSP problem

Ding et al. (2019), it is necessary to identify the critical path,

critical operations, and critical blocks. Then we adopt the

N7 neighborhood structure (called Nπ here González et al.

(2015) ) and k-insertion neighborhood structure (called Nα

here Mastrolilli and Gambardella (2000)), and construct the

neighborhood Nπ and Nα (line 6 and line 7), respectively.

Let N denote the union of the two neighborhoods, and the

solutions in the tabu state are removed (line 9). If N is empty,

which means all neighborhood actions are in tabu state, then

a random perturbation operation is performed on the current

solution Sc (line 11).

If N is not empty, we approximately evaluate each of

the neighborhood solutions, and sort them according to as-

cending order of the approximate makespan. Then we select

the first K solutions and store them in topkSet. Since the

approximate makespan are often not accurate, it is necessary

to accurately evaluate each solution in topkSet, calculate its

actual makespan, and select the solution S
′

with the smallest

makespan to replace the current solution. After that, this

neighborhood move is added to the tabu table (line 16) and

replace the current solution with the neighborhood solution S
′

(line 17).

Since both the Nπ and Nα neighborhood moves change the

job sequences on the machines, it is also necessary to update

the memory allocation status of each data block and re-allocate

memory for each data block (line 18). For this purpose, we

design a memory update algorithm which is described in detail

in Section IV-C.
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C. Memory update procedure

The time of each task consists of the transfer time and the

execution time. The transfer rates of high-speed memory and

low-speed memory are not the same. At the same time, high-

speed memory has a capacity limit, so the memory allocation

strategy of data blocks will affect the final result. In the whole

algorithm process, the memory update procedure will be called

repeatedly since there are numbers of iterations. Based on the

above two reasons, it is required to design an memory update

strategy to handle the memory allocation efficiently.

The memory refresh strategy is mainly based on two basic

greedy criteria:

1) Assign as many blocks of data to fast memory as

possible without violating capacity constraints.

2) Prioritize “important” data blocks into high-speed mem-

ory.

Based on the fact that makespan cannot be optimized with-

out shortening the length of the critical path, we define the data

blocks on the critical path as “critical data blocks” by analogy

with the concept of critical blocks in FJSP. The difference

is that tasks only appear once in the entire sequence, while

the data blocks may be used by multiple tasks, resulting in

various transfer times. Therefore, we use the number of moves

transferred on the critical path to measure the importance of

each data block.

When the memory is updated, the local search has set the

task sequence, and when all the memory is placed at a low

speed, a complete solution has been generated. Therefore, we

can calculate the start time and duration of each stage, the

time when each data block enters the memory and the time

when it is moved out of the memory. Besides, the critical path

and critical task information can be marked.

The required information is calculated and sequenced as

follows:

1) The topological order of the solution;

2) The R value is calculated according to the topological

order, and the calculation method is as follows:

• The maximum value of the end time of all pre-

decessor tasks (including the predecessor generated

by data block dependencies) plus a period of time

which depends on the feature of the edge.

• The end time of predecessor task on the same

control unit.

• The end time of the execution of the predecessor

task on the same machine minus the move-in time

of the current task.

The R value of the current task is the maximum

value of the above times.

3) Similarly, the Q value can be calculated as follows:

• The maximum Q value of all predecessor tasks

including the successor generated by data block

dependencies.

• The Q value of the task on the same control unit.

• The Q value of the successor task on the same

machine minus the move-out time of the current

task.

The Q value of the current task is the sum of

its processing time and the maximum value of the

above times.

4) The data block is moved into memory when the task

that generates it starts moving in, and is released after

all tasks that depend on it have been moved out. Thus

we can calculate the lifetime of the data block.

5) The critical task can be identified as follows: makespan

is the maximum sum of R and Q of each task, and all

the tasks where the sum of R and Q equals makespan

are critical task.

With the global information, the number of occurrences of the

data block on the critical path is the number of critical tasks

that generate it or depend on it. The data blocks are sorted

according to the descending order of their occurrences.

When trying to put important data blocks into high-speed

memory, the peak memory usage may exceed the memory

capacity. Therefore, a judgement strategy is needed to ensure

that memory capacity constraints are met, which is designed

as follows: after calculating the lifetime of all data blocks,

the memory usage per second can be calculated through

the differential array, and then it can be judged whether it

exceeds the limit. However, it is time-consuming to obtain the

information per second since the size of makespan is often

much larger than the number of data block nodes. It is easy

to know that the peak of memory usage must occur when the

data blocks are put into the memory, so all the time nodes that

generate memory usage changes can be discretized first, and

then differentiate them into array, thus to determine whether

the peak memory usage exceeds the capacity limit.

Algorithm 3 describes the pseudo code of the memory

updating procedure. First, it allocates all data blocks to low-

speed memory and initializes the dataSet. Then at each

iteration, it performs topological sorting on all the tasks and

calculate the R, Q, and Slack values, and sequentially try

to allocate the most important data block that has not been

assigned to memory. If the memory usage does not exceed its

capacity limit, then it allocates the data block to the memory.

Subsequently, the critical path may be changed because the

allocation of a data block is determined. Therefore, in the

next round of circulation, it is necessary to recalculate the R,

Q, and Slack values before the next round of iteration, and

re-evaluate the importance of the remaining data according

to these information. Since the data block is deleted from

dataSet every time the memory is allocated for the selected

data block, the memory updating procedure is completed when

dataSet is empty.

V. EXPERIMENT DESIGN AND ANALYSIS

A. Parameter settings and experimental protocol

In subsequent sections we conduct extensive experiments to

evaluate the performance of the proposed TS algorithm on four

sets of randomly generated instances which named random-

CaseA, randomCaseB, randomCaseC and randomCaseD.Each

of them has 10 instances. The number of jobs in each

instance is 500-1000,which is obtained from actual production

examples randomly.We coded TS algorithm in C++ and ran it



9

Algorithm 3 The memory updating procedure

1: Input: The temp solution S
′

in Tabu Search, Problem instance p
2: Output: The true solution St

3: S′ ← InitMemory(S′ ), R,Q, Slack← Init()
4: dataSet← getAllData(), taskSeq ← getAllTask()
5: while dataSetisnotempty do
6: topoSeq ← TopoSort(taskSeq, p)

7: calcuRQSlack(topoSeq, p, S
′

)
8: D← −1, maxUseT ← 0
9: for each data d in dataSet do

10: criticalUse← countCriIn(d) + countCriOut(d)
11: if criticalUse > maxUseT then

12: maxUseT ← criticalUse
13: D← d
14: end if

15: end for

16: if memory of highType2 is enough then

17: AssignToMemory(d, highType2)
18: else if memory highType1 is enough then

19: AssignToMemory(d, highType1)
20: else
21: AssignToMemory(d, lowType)
22: end if

23: updataSolution(St)
24: dataSet← dataSet \ {d}
25: end while

26: return St

TABLE I
PARAMETER SETTINGS IN TS

Para. Description Value

Kmax maximum accurate evaluation 100
p memory update round 100

θ1 tabu tenure for Nk m+ rand()%(2 ∗m)
θ2 tabu tenure for Nπ n+ rand()%n
λ depth of tabu search 100000
Tmax maximum run time of TS 600 seconds

on a cluster of Intel(R) Xeon(R) CPU E7-8870 @ 2.40Ghz.

Table I gives the descriptions and settings of the parameters

used in TS where the last column denotes the settings for the

set of all the instances. These parameter values are determined

by extensive preliminary experiments.

TABLE II
THE BASIC INFORMATION FOR THE BENCHMARKS

Item Description Value

DAG

Num. of tasks [200,300]
Num. of data blocks [500,700]
Num. of cores 2 high-speed + 8 general
Num. edges : Num. tasks 8:1

time
Tin : Tproc : Tout 7:15:5
Shigh : Slow 1.2:1

data data size [1,15000]

Table II presents the basic information of the instances,

where columns Tin, Tproc, and Tout denote to move-in time

from global memory before execution, the processing time,

and the move-out time from global memory after execution of

a task, respectively. Shigh and Slow denote the data access time

of high-speed and low-speed memories, respectively. There are

40 instances with different processing time and data access

time. Note that all of the instances are with the same DAG

and memories sizes, and there are infinite size of low memory

size.

B. The comparison of different initial solution strategy

The initial solution is iteratively constructed, where each

step the most important task is assigned to the best core, and

the data block it produces is allocated to the best memory.

The criterion of identifying the priority of the tasks is vitally

important for the quality of initial solution. There are four

metrics for evaluating the importance of the tasks.

• R-first strategy The R value of each task represents the

earliest start time of the task. The R-first strategy means

selecting tasks in the order in which the tasks start, and

then assigning core to it and allocating memory to the

data blocks it generates. If the R values of the two tasks

are the same, then compare their Slack values. If the

Slack values are the same, then compare the minimum

value of the Slack values of all successor tasks of the

incumbent task.

• Slack-first strategy The Slack value indicates the ur-

gency of the task. A small Slack value of a task indicates

that the task has a relatively small active space. In

specific, Slack = 0 means that the task is a critical task

and should start to processing once it releases, otherwise

it would prolong the makespan. The Slack-first strategy

is similar to the R-first strategy, the only difference is that

it hierarchically considers Slack first and then R value.

• Random strategy After obtaining the most cutting-edge

node set, it randomly selects one task from the cutting-

edge nodes each time, then assigns it to a core and

allocates memory for its data blocks.

• Relaxed R-first strategy Under the R-first strategy, if

there exists small difference between the R values and

larger difference between the Slack values of the two

tasks, the task with the slightly smaller R value and larger

Slack value will be selected first, while the other one

with smaller Slack value is abandoned. To avoid missing

the task with good attribute, we relax the R value and

consider two tasks to be approximately the same if the

difference between their R values is within a small range,

then hierarchically select the task with smaller Slack

value.

Table V-B reports the results of the tabu search algorithm

with different initial solutions based on the above four dif-

ferent strategies, which are denoted by Slack-First, R-First,

Rand, and RelaxR, respectively. Columns S0 and S∗ denote

makespan of the initial solution and best found solution

obtained by the algorithms, respectively. One observes from

Table V-B that although the initial solution generated with the

Slack-First strategy is the worst, the final solution obtained by

TS with the Slack-First strategy is best since it obtains the

smallest average makespan of 584747.6. Besides, compared

with TS with RelaxR, TS with Slack-First improves the

makespan of the final solution by 0.55%. This indicates that

the initial solution has impact with effectiveness of the tabu

search algorithm.
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TABLE III
COMPARISON OF THE MAKESPAN OBTAINED BY THE TABU SEARCH ALGORITHM WITH DIFFERENT INITIAL SOLUTION

Instance

TS (Slack-Frist) TS (R-Frist) TS (Rand) TS (RelaxR)

S0 S∗ S0 S∗ S0 S∗ S0 S∗

randomCaseA1 606074 348413 362823 339524 470576 338980 376195 337985

randomCaseA2 831278 466610 542076 467090 672760 475377 540276 473230

randomCaseA3 1133081 606081 690344 613336 882980 610114 708680 617578

randomCaseA4 1360052 761321 871184 771733 1087429 753663 898110 760910

randomCaseA5 1642066 926061 1047247 926277 1344884 934052 1067851 927152

randomCaseA6 451932 284280 307594 285878 382830 284506 308091 285450

randomCaseA7 701007 394816 446356 400293 561346 396292 447646 399976

randomCaseA8 990970 534694 637073 533002 764315 533981 624604 533351

randomCaseA9 1235485 682684 783087 686142 999947 682065 793142 685679

randomCaseA10 1520976 842516 953306 847068 1217143 842005 949004 858474

Avg. 1047292 584747.6 664109 587034.3 838421 585103.5 671359.9 587978.5
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Fig. 3. The boxplot of makespan obtained by TS on 10 instances

C. Implementation of load balancing algorithms and compar-

ison

Load balancing algorithm is a general task scheduling

method in cloud computing which basically balances the load

to achieve higher throughput and better resource utilization

Gupta and Garg (2017). We use a load balancing algorithm

as a benchmark method to illustrate the effectiveness of

the proposed tabu search algorithm. In the load balancing

algorithm, it always selects the task that can start earliest, and

sort them on the machine according to the ascending order

of the earliest time that can start to move. Besides, it always

selects the the most idle core.

Table V-C presents the results of the proposed tabu search

algorithm and the load balancing algorithm (denoted by LB)

on 10 randomly generated instances. According to the ratio

of high speed memory in the whole memory, it consists of

two parts: 20% and 100% of high speed memory. In column

H:x/L:y, x and y denote the number of high-speed cores

and general low-speed DSP cores, respectively. The results

in Table V-C show that TS improves the makespan by 5.96-

25.75% compared with LB for all the tested instances, which

demonstrates the effectiveness of the proposed tabu search

algorithm.

D. The stability of the tabu search

In this section, we analyze the stability of tabu search

algorithm by run TS on 10 instances from randomCaseC1

to randomCaseC10. For this purpose, we apply TS on each

Im
p
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en
t

Core_Num

Fig. 4. The change of makespan with respect to the number of high speed
cores

instances for 20 independent runs, and each run is equipped

with a different initial solution. The aim is to detect the

difference on the quality of best found solutions. The com-

putational results are plotted in Fig. 3. It can be observed that

the range of makespan and its mean values are relatively low

for each instances, and the difference between the minimum

and maximum makespan is almost the same among these

instances, which confirms the stability of the proposed tabu

search algorithm.

E. The impact of the number of cores

In this section we analyze the impact of the number of

cores to the performance of TS. For this purpose, we apply

TS and LB on three instances namely randomCaseD1 to

randomCaseD3, and plot the results in Fig. 4, where the x-

axis represents the number of cores and y-axis represents the

improvement rate of makespan obtained by TS compared with

LB. Note that in order to guarantee the heterogeneity of the

architecture, there are at least two synergistic high-speed cores.

From Fig. 4, one observes that the improvement rate in-

creases from 10% to 30% when the number of DSP cores

increases from 2 to 12, and decreases to 0 when the number

of DSP cores increases from 12 to around 28, and always keep

at 0 when there are more than 28 DSP cores. The reason lies

behind may be that with small number of DSP cores, multiple

unrelated tasks are assigned to the same cores and thus leads

to that part of them depends on the others, while if there are

sufficient cores, the predecessors of one task can be assigned to
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TABLE IV
COMPARISON BETWEEN TS AND LB ON TEN RANDOMCASES UNDER DIFFERENT MEMORY LIMIT AND CORE NUMBERS

Instance Alg.

HighSpeedMemory-20% HighSpeedMemory-100%

H:2/L:2 H:2/L:4 H:2/L:6 H:2/L:8 H:2/L:2 H:2/L:4 H:2/L:6 H:2/L:8

randomCaseB1

LB 1432933 734099 518719 425040 1404754 711876 495737 422815
TS 1313619 660178 447149 336574 1236491 620701 412247 313958

Ratio 8.33% 10.07% 13.80% 20.81% 11.98% 12.81% 16.84% 25.75%

randomCaseB2

LB 2060452 1053167 738849 588060 2021406 1013852 752311 552902
TS 1878409 928423 618708 459974 1814555 893656 593398 445119

Ratio 8.84% 11.84% 16.26% 21.78% 10.23% 11.86% 21.12% 19.49%

randomCaseB3

LB 2719737 1388044 994029 731136 2652843 1363367 983305 710956
TS 2471825 1219171 809493 604653 2417181 1199263 795777 593234

Ratio 9.12% 12.17% 18.56% 17.30% 8.88% 12.04% 19.07% 16.56%

randomCaseB4

LB 3361614 1709825 1235748 943059 3298899 1777821 1152681 939897
TS 3113048 1539651 1021411 768652 3063450 1519906 1004531 753172

Ratio 7.39% 9.95% 17.34% 18.49% 7.14% 14.51% 12.85% 19.87%

randomCaseB5

LB 4064859 2054323 1420240 1092212 4012397 2110902 1408303 1133168
TS 3810226 1858816 1250750 929974 3750378 1854673 1231774 922303

Ratio 6.26% 9.52% 11.93% 14.85% 6.53% 12.14% 12.53% 18.61%

randomCaseB6

LB 1183168 610893 415408 350052 1093761 584773 416284 328006
TS 1092502 553014 384601 286620 1021168 506650 340688 259167

Ratio 7.66% 9.47% 7.42% 18.12% 6.64% 13.36% 18.16% 20.99%

randomCaseB7
LB 1749517 886106 612634 486318 1679404 878062 592738 495505
TS 1572941 777143 528727 393811 1515265 752568 492704 375646

Ratio 10.09% 12.30% 13.70% 19.02% 9.77% 14.29% 16.88% 24.19%

randomCaseB8
LB 2376474 1252518 833821 658138 2332810 1216888 857730 656384
TS 2167320 1067950 714538 548328 2118525 1038375 688568 520437

Ratio 8.80% 14.74% 14.31% 16.68% 9.19% 14.67% 19.72% 20.71%

randomCaseB9
LB 3006076 1593192 1100513 889751 2968040 1571656 1055565 858396
TS 2802003 1377207 934240 687738 2735798 1358655 891153 668286

Ratio 6.79% 13.56% 15.11% 22.70% 7.82% 13.55% 15.58% 22.15%

randomCaseB10

LB 3674225 1896471 1392596 963473 3630897 1855778 1285530 1006734
TS 3455123 1705252 1134921 847893 3394879 1672559 1118196 837163

Ratio 5.96% 10.08% 18.50% 12.00% 6.50% 9.87% 13.02% 16.84%

different cores and can be processed in a parallel way. Table V

reports the detailed results of LB and TS and their differences

with 2 to 50 DSP cores.

F. The Effect of mixed evaluation strategy

It is known to all the the key operations in local search

procedure is the evaluation of neighboring solutions. To reduce

the computational burden in tabu search, we introduce a mixed

evaluation strategy in this paper. In specific, at each iteration

of TS, we first apply approximate evaluation method on all

the neighboring solutions, which may calculate makespan not

that accurately but it runs very fast. Then, we sort these

neighboring solutions according to the ascending order of

makespan. Subsequently, we apply exact evaluation method

the on the top k solutions, and choose the one with minimum

makespan to replace the current solution before entering into

the next round of tabu search.

Fig. 5 and Fig. 6 plot the results of TS with respect to the

ratio of exact evaluation on a random instance and a larger

instance, i.e., 5 times of itself, respectively. One observes that

when k = 1, the left most point in x-axis, represents exactly
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Fig. 5. The change of makespan with respect to the ratio of exact evaluation
on a random instance

evaluate the best solution measured by approximate method.

Both curves decrease when k ∈ [1, 30] and k ∈ [1, 120],
and slightly increase with the increase of k. This mainly

because that, with the same cutoff time, too many runs of exact
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TABLE V
COMPARISON BETWEEN TS AND LB WITH RESPECT TO DIFFERENT NUMBER OF HIGH SPEED CORES

Num.

randomCaseD1 randomCaseD2 randomCaseD3 randomCaseD4 randomCaseD5 randomCaseD6 randomCaseD7 randomCaseD8 randomCaseD9 randomCaseD10

LB TS Imp. LB TS Imp. LB TS Imp. LB TS Imp. LB TS Imp. LB TS Imp. LB TS Imp. LB TS Imp. LB TS Imp. LB TS Imp.

2 3198633 2888124 9.71% 2946630 2646980 10.17% 3056492 2764396 9.56% 3299728 2996062 9.20% 3386055 3091910 8.69% 3549998 3276378 7.71% 3322715 3052583 8.13% 3530529 3243464 8.13% 3745311 3414566 8.83% 3798137 3476018 8.48%

4 1613162 1435472 11.02% 1494957 1307182 12.56% 1565101 1374361 12.19% 1705887 1483618 13.03% 1738912 1516734 12.78% 1814678 1616269 10.93% 1693341 1488885 12.07% 1871944 1587513 15.19% 1876515 1673427 10.82% 1969425 1695215 13.92%

6 1121793 950900 15.23% 1038512 863557 16.85% 1098781 905511 17.59% 1164225 993670 14.65% 1224088 1010947 17.41% 1239864 1081534 12.77% 1186216 995118 16.11% 1282006 1062742 17.10% 1307113 1116657 14.57% 1333648 1133991 14.97%

8 879162 707819 19.49% 779266 648545 16.77% 866031 689727 20.36% 956007 755795 20.94% 945951 767166 18.90% 999844 809962 18.99% 935274 748828 19.93% 1064968 805252 24.39% 995450 837599 15.86% 1065546 856122 19.65%

10 751317 569169 24.24% 669215 523192 21.82% 695549 557363 19.87% 808228 615656 23.83% 820338 619690 24.46% 806663 652603 19.10% 777568 605441 22.14% 917611 652602 28.88% 832829 673674 19.11% 911366 694627 23.78%

12 638930 482436 24.49% 597601 444264 25.66% 640345 472777 26.17% 655687 519087 20.83% 663402 527766 20.45% 675623 550161 18.57% 772425 554246 28.25% 776926 602834 22.41% 700731 567047 19.08% 789158 601287 23.81%

14 604559 458431 24.17% 553472 393466 28.91% 593507 464112 21.80% 631971 458717 27.41% 666627 517773 22.33% 624856 476378 23.76% 743434 554246 25.45% 748838 602834 19.50% 622223 490909 21.10% 770361 601287 21.95%

16 551788 458431 16.92% 511163 386340 24.42% 550847 464112 15.75% 596871 429031 28.12% 670277 517773 22.75% 582665 426931 26.73% 585693 554246 5.37% 684248 602834 11.90% 536940 434687 19.04% 729197 601287 17.54%

18 551336 458431 16.85% 468664 386340 17.57% 541649 464112 14.31% 583086 429031 26.42% 613091 517773 15.55% 525365 399794 23.90% 597721 554246 7.27% 668350 602834 9.80% 538069 414056 23.05% 760911 601287 20.98%

20 604093 458431 24.11% 483166 386340 20.04% 515153 464112 9.91% 516870 429031 16.99% 618600 517773 16.30% 492935 399794 18.90% 628480 554246 11.81% 639094 602834 5.67% 536710 414056 22.85% 709888 601287 15.30%

22 519229 458431 11.71% 461574 386340 16.30% 498533 464112 6.90% 543043 429031 21.00% 588662 517773 12.04% 484540 399794 17.49% 634449 554246 12.64% 620872 602834 2.91% 486252 414056 14.85% 736865 601287 18.40%

24 503462 458431 8.94% 427049 386340 9.53% 538027 464112 13.74% 482281 429031 11.04% 579522 517773 10.66% 456069 399794 12.34% 605923 554246 8.53% 668267 602834 9.79% 481680 414056 14.04% 679407 601287 11.50%

26 487449 458431 5.95% 434194 386340 11.02% 502194 464112 7.58% 446363 429031 3.88% 580815 517773 10.85% 469477 399794 14.84% 595677 554246 6.96% 644709 602834 6.50% 486778 414056 14.94% 630577 601287 4.64%

28 481586 458431 4.81% 436479 386340 11.49% 464112 464112 0.00% 484036 429031 11.36% 580815 517773 10.85% 429604 399794 6.94% 596567 554246 7.09% 602834 602834 0.00% 474013 414056 12.65% 701373 601287 14.27%

30 470795 458431 2.63% 436479 386340 11.49% 467758 464112 0.78% 479707 429031 10.56% 517773 517773 0.00% 461356 399794 13.34% 596361 554246 7.06% 636737 602834 5.32% 470519 414056 12.00% 652976 601287 7.92%

32 458431 458431 0.00% 418867 386340 7.77% 467984 464112 0.83% 475577 429031 9.79% 548791 517773 5.65% 447653 399794 10.69% 554246 554246 0.00% 622928 602834 3.23% 446039 414056 7.17% 659902 601287 8.88%

34 492587 458431 6.93% 386340 386340 0.00% 464112 464112 0.00% 429031 429031 0.00% 544831 517773 4.97% 438891 399794 8.91% 554246 554246 0.00% 602834 602834 0.00% 445778 414056 7.12% 659902 601287 8.88%

36 501445 458431 8.58% 386340 386340 0.00% 464112 464112 0.00% 429031 429031 0.00% 547426 517773 5.42% 406142 399794 1.56% 554246 554246 0.00% 602834 602834 0.00% 450462 414056 8.08% 659902 601287 8.88%

38 473452 458431 3.17% 386340 386340 0.00% 464112 464112 0.00% 429031 429031 0.00% 519071 517773 0.25% 399794 399794 0.00% 554246 554246 0.00% 602834 602834 0.00% 414056 414056 0.00% 605157 601287 0.64%

40 458431 458431 0.00% 386340 386340 0.00% 464112 464112 0.00% 429031 429031 0.00% 532116 517773 2.70% 449778 399794 11.11% 554246 554246 0.00% 602834 602834 0.00% 414056 414056 0.00% 620827 601287 3.15%

42 472655 458431 3.01% 386340 386340 0.00% 464112 464112 0.00% 429031 429031 0.00% 537749 517773 3.71% 441016 399794 9.35% 554246 554246 0.00% 602834 602834 0.00% 414056 414056 0.00% 601287 601287 0.00%

44 458431 458431 0.00% 386340 386340 0.00% 464112 464112 0.00% 429031 429031 0.00% 517773 517773 0.00% 399794 399794 0.00% 554246 554246 0.00% 602834 602834 0.00% 414056 414056 0.00% 601287 601287 0.00%

46 466430 458431 1.71% 386340 386340 0.00% 464112 464112 0.00% 429031 429031 0.00% 517773 517773 0.00% 399794 399794 0.00% 554246 554246 0.00% 602834 602834 0.00% 414056 414056 0.00% 601287 601287 0.00%

48 458431 458431 0.00% 386340 386340 0.00% 464112 464112 0.00% 429031 429031 0.00% 517773 517773 0.00% 399794 399794 0.00% 554246 554246 0.00% 602834 602834 0.00% 414056 414056 0.00% 601287 601287 0.00%

50 458431 458431 0.00% 386340 386340 0.00% 464112 464112 0.00% 429031 429031 0.00% 517773 517773 0.00% 399794 399794 0.00% 554246 554246 0.00% 602834 602834 0.00% 414056 414056 0.00% 601287 601287 0.00%
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Fig. 6. The change of makespan with respect to the ratio of exact evaluation
on five times of a random instance
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Fig. 7. The comparison between TS and LB on different ratio of high speed
memory

evaluation strategy leads to the less iterations of tabu search,

thus deteriorate its effectiveness. This indicates that the mixed

evaluation strategy is a comprise of exact and approximate

methods, which can select a relatively high-quality solution

quickly.

G. The effect of high speed memory ratio on makespan

In this section, we intend to detect the effect of high speed

memory ratio on makespan. We apply TS and LB on instance

randomCaseD2 for 20 independent runs respectively, and plot

the results in Fig. 7. One observes that TS outperforms LB

for all the memory ratio range from 0 to 0.19 at least with

a difference of 2000 in makespan. The reason may be that,

due to the greedy strategy adopted by the memory allocation

strategy, the two algorithms have an abnormal situation that

the proportion of high-speed memory increases slightly, and

the makespan increases instead, which has minimum or no

impact on the tabu search algorithm.

Besides, when the high-speed memory is insufficient, the

makespan obtained by tabu search increases slightly, indicating

that the tabu search can more effectively avoid the impact of

insufficient high-speed memory. The makespan of tabu search

in low speed is still lower than that of load balancing in high

speed. Therefore, by limiting the usage of high-speed memory,

a better scheduling scheme for both makespan and high-speed

memory can be obtained.

VI. CONCLUSIONS

This paper propose a tabu search algorithm to tackle the

task scheduling problem in the digital signal processor. By

qualitatively and quantitatively analyzing the performance

of load balancing, multi-priority initial solutions, and local

search in different cases with different numbers of cores and

different high-speed memory ratios, the following conclusions

are drawn:

First, the disadvantage of greedy construction mainly occurs

in that tasks that are not in a hurry to be executed are assigned

resources in the early stage of scheduling, resulting in the re-

maining tasks with task constraints between each other cannot

be parallelized at the end of scheduling, and a large number

of resources are idle, resulting in low resource utilization, and

the local search can be performed by continuously adjusting

the tasks stuck on the critical path due to machine constraints,

so that the end time of each machine tends to be consistent.

Second, the local search algorithm has good stability and

is little affected by the initial solution goodness and different

random seeds.

Third, the tabu search method averagely improves the

makespan by 5-25% compared to load balancing algorithm.

Different cores/high-speed memory ratios have an impact on

the boost rate, and the load balancing algorithm is unstable

and may deteriorate significantly in some cases.

Fourth, hybrid evaluation balances evaluation accuracy and

evaluation time, and finally enables the local search to con-

verge to a better solution.

Fifth, the influence of the number of cores on the promotion

rate can be regarded as a normalized function, and the number

of cores with the maximum promotion rate under different

other conditions is not necessarily the same.

Sixth, compared with the greedy algorithm, the local search

is more adaptable to the situation of insufficient high-speed

memory, and makespan increases less than when the high-

speed memory is sufficient, and the scheduling results of the

local search are often better than the load on the premise of

not using any high-speed memory.

Future research directions can be combining population-

based metaheuristic methods and problem-specific knowledge

to enhance the performance of the current algorithm. Besides,

Solution-based tabu strategy is also worthy to attempt in order

to improve the search intensification of heuristics. Further-

more, another extension to this study could include energy-

aware information allocation and task scheduling with the goal

of optimizing the total workload to execute and to minimize

the total energy consumption.
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