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ABSTRACT

Quantum computers promise polynomial or exponential speed-up in solving certain problems com-
pared to classical computers. However, in practical use, there are currently a number of fundamental
technical challenges. One of them concerns the loading of data into quantum computers, since they
cannot access common databases. In this vision paper, we develop a hybrid data management archi-
tecture in which databases can serve as data sources for quantum algorithms. To test the architecture,
we perform experiments in which we assign data points stored in a database to clusters. For clus-
ter assignment, a quantum algorithm processes this data by determining the distances between data
points and cluster centroids.

Keywords Data management for quantum computing - Hybrid quantum computing - Data loading - Data encoding

1 Introduction from the Database Perspective

Quantum computers have the potential to perform certain calculations much faster than classical computers. They can
be used in various application areas, such as optimization, machine learning or search algorithms, to name just a few
examples [1, 8, 6]. Depending on the problem, a polynomial or exponential acceleration can be assumed compared to
a classical computer [20]. It is foremost a mathematical superiority. However, for practical use, certain hurdles must
be addressed.

First of all, the current generation of quantum computers (NISQ) can be termed as noisy and limited in scalability [12,
24]. This means that the number of qubits is limited, and the qubits themselves are error-prone. Next difficulty
concerns loading data into the quantum computer. From the perspective of a database, data is managed in various
database models that need to be processed to solve a particular problem or query. In principle, it may be interesting to
perform this processing on a quantum computer for certain problems or queries. We introduce some computationally
intensive queries later on. Quantum computers, however, cannot access databases directly [23]. Moreover, today’s
quantum algorithms assume its input data is already in the desired form [10]. The data to be processed has therefore
first to be encoded in a suitable way in order to be used on a quantum computer at all. The encoding must reflect the
structure of the data, for example, when data is organized hierarchically (in trees) or semi-structured (in documents).
Efficient encoding of data is a challenge [10, 7] as well as a future research direction [8]. Last but not least, workflows
and interfaces for data exchange between classical systems (such as applications but also databases) and quantum
computers are an issue. An important design goal of such hybrid systems should be the reduction and manageability
of complexity. Our contributions are therefore the following:

1. In this vision paper, we describe a hybrid system that enables the exchange of data between applications and
databases and quantum computers and call it Hybrid Data Management Architecture (HDMA). The archi-
tecture acts as a framework for researching and piloting appropriate encoding methods for data in different
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data structures and models. It is also a framework for designing future data-centric applications for quantum
computing.

2. We validate an early prototype of this architecture on an example.

The remainder of the paper is structured as follows: In Section 2 we discuss related work. In the following, we
describe the HDMA (Section 3) and in Section 4 its proof of concept. In doing so, we use a quantum distance
estimation algorithm. Section 5 provides a summary and outlines next steps.

2 Related Work

We review work on computationally intensive database queries, quantum technologies in the database environment,
data encoding, and data exchange.

Computationally intensive queries. We first addressed the question of whether data models and corresponding
queries exist that are of interest for quantum computing. We first look at queries that are computationally intensive
and therefore represent interesting objects of investigation to determine whether quantum computers can generally
enable their acceleration. As an example, data organization in labeled trees (like XML trees) can be given here.
David [2] describes an NP-Complete problem involving data tree patterns as a query language for such trees. Gottlob
et al. [5] discuss the complexity of XPath queries (used for node selection) on such trees. These queries exhibit a
polynomial runtime, and for some the polynomial degree can be 4 or 5. Another NP-hard problem is the keyword
search in (graph) databases, which is related to the so-called Group Steiner Tree problem [14]. This non-exhaustive
list of examples shows that interesting query candidates exist for quantum computing.

Quantum technologies in the database environment. In [1] quantum algorithms (such as Grover) and heuristics
(such as Variational Quantum Algorithms or Quantum Annealing) for optimizing queries and transaction plans are
presented. The development of hybrid algorithms for database problems is mentioned as a future research direction.
Yuan et al. [27] also conduct a literature review on quantum computing for database problems (such as database search,
database manipulation, or query optimization). In addition, the paper outlines a vision of a quantum-based multi-modal
database. Joczik and Kiss [9] describe some possible applications for database systems based on Grover’s algorithm.
In [13], the idea of a so-called data center with Quantum Random Access Memory (QRAM) is presented. Classical or
quantum information should be able to be uploaded and downloaded to the center. This uploaded information can be
processed, e.g. by suitable quantum algorithms. However, the authors assume that QRAM has been constructed in a
fault tolerant manner and has been error corrected. Today, however, noise resilience and scalability represent major
unsolved hurdles [17]. An implementation of a sufficiently large memory therefore seems to be impossible today [15].

In summary, the papers present visionary ideas, future research directions, and reviews of the literature. Our contribu-
tion is to develop not only concepts for the use of quantum technologies in the database environment, but also a hybrid
architecture that can be implemented today to successively realize these concepts. The architecture is a framework for
exploring and testing appropriate encoding methods for data in various data structures and models, and implement-
ing certain queries using quantum computing. To the best of our knowledge, there is no other work that addresses
a framework for realizing the above database queries using database systems or classical technologies and quantum
technologies.

Data encoding. Encoding represents the transformed classical data by means of qubits [10]. Only then can the data be
processed on a quantum computer. In [23, 25, 26], various encoding procedures are explained, which are understood as
patterns. These patterns are reusable self-contained building blocks that can be reused in the construction of quantum
algorithms.

As mentioned earlier, data can be organized in different data models and structural information must be preserved when
encoding. A first idea of how to encode data organized in labeled trees was presented in [28]. We are not aware of any
other work on encoding specific database data models. In general, the encryption methods we are developing are also
intended to serve as a blueprint for future improved quantum hardware. For these, roadmaps are given, accompanied
by appropriate research [19].

Data exchange. Another aspect concerns the exchange of data between classical components and quantum comput-
ers. Data wrangling, pre-processing, job management, post-processing, and feeding back the results to applications
or a databases are individual processes here. The work of Weder et al. [22] deals with orchestration using BPMN
workflows. The described approach with many steps and modeling aspects seems complex to us. It can be gener-
ally stated that more complex systems (such as so-called data mesh architectures) tend towards complexity and cause
considerable additional expenses for their operation [11].



A PREPRINT - MARCH 20, 2024

To reduce complexity, we propose a decentralized approach with a lightweight, asynchronous communication mech-
anism by adopting the microservice paradigm. Microservices are typically used to manage the increase in complexity
of systems [4].

3 Architectural Description

This Section introduces the Hybrid Data Management Architecture (HDMA). We derive these from the introductory
Section 1 and the considered work of Section 2. Figure 1 shows the schematic structure of the architecture. The
classic components include a series of loosely coupled services that follow the microservice paradigm. These are
the following services: Decision Service, Circuit Service, Data Service, Backend Service and Result Manager. Some
services communicate with a Gate-based Quantum Computer that processes data to solve a task. A Gate-based
Quantum Computer is characterised by its ability to be used for a wide range of problems. This type of quantum
computer is based on quantum gates for encoding and processing data, which form a Quantum Circuit. Today, quantum
computers are usually provided as cloud services. Instead of quantum computer, a simulator can also be used.
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Figure 1: Hybrid Data Management Architecture [Source: Own representation]

We will first provide a brief overview of the services before focusing on communication. As motivation, we imagine an
Application that would initiate a computationally intensive query or intends to solve another computationally intensive
problem. The decision as to whether a problem is calculated using a Gate-based Quantum Computer or completely
classically is made by the Decision Service. The data required to solve a problem, as well as the results of the
calculations, are stored in Databases and managed by the Data Service. The Circuit Service generates Quantum
Circuits for the Gate-based Quantum Computer that contain the data and processing instructions. The transmission of
Quantum Circuits to Gate-based Quantum Computer is the responsibility of the Backend Service. The Result Manager
determines whether previously transmitted Quantum Circuits have been executed and notifies the Application and /
or Data Service if a result is available. Based on the services and the Gate-based Quantum Computer, we define the
following reference procedure in which messages are exchanged asynchronously between the services.

Message 1. An Application notifies the Decision Service of the problem to be solved. This first verifies whether
a problem should be calculated using a Gate-based Quantum Computer or not and notifies the Application of the
decision. We assume in the following that a Gate-based Quantum Computer is to be used. Otherwise, the problem is
solved classically and the Application communicates directly with the Data Service for the purpose of data exchange
(Message 9).

Message 2. The Data Service is notified in order to extract the data required to solve the problem.

Message 3. After all data is available, the Circuit Service is notified to generate a corresponding Quantum Circuit. If
appropriate, several circuits are created.

Message 4. Once the circuits have been successfully created, the Backend Service is triggered to transfer them to a
Gate-based Quantum Computer.
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Messages 5-6. The Backend Service then transmits the circuits to a Gate-based Quantum Computer using a quantum
cloud service and initiates their execution (Message 5). At the same time, the Result Manager is notified, which
monitors the status of the execution (Message 6).

Messages 7-8. Once the Result Manager determines that the execution of a circuit has been completed, it retrieves the
result. The status and result are retrieved via a quantum cloud service (Message 7). At the same time, the Application
and / or Data Service can be notified (Message 8). The result can be sent directly to the Application, stored in a
Database or both. Usually, the result obtained must be post-processed. In particular, other data records stored in
Databases can be used for this purpose. This step is performed by the Application.

Next, we take a brief look at the structure of a Quantum Circuit. A Quantum Circuit can be roughly divided into
the areas of Encoding, Unitary Transformation and Measurement [21, 23]. The Encoding block is responsible for
encoding, which means that data and, if necessary, parameters are loaded and encoded in a quantum state. This
quantum state forms the starting point for the actual quantum algorithm in the Unitary Transformation block, which
can manipulate the initial state. The execution of an algorithm ends with the Measurement of the final quantum state,
which represents the result.

Finally, we address two aspects that are to be supported by the HDMA.

Circuit generation. In some cases, the circuits are generated on demand, in others automatically, e.g. when data
changes. The first method can be useful if, for example, different small portions of historical data or predefined
problem instances are to be processed. In the second case, data changes (e.g. new or updated data records) must be
detected automatically and the circuit generation must then be triggered automatically at certain times. In this scenario,
a quantum algorithm works with data set at a given time or the most recent time.

Data restrictions / data economy. Considering data restrictions in the architecture is central to quantum computing.
More data requires more qubits and longer runtimes of state preparation routines. We propose to store data constraints
in profiles to define only a reasonable minimum amount of data to be processed on a quantum computer. For a given
use case, different profiles can be used, e.g. to manage different data value ranges or different graph partitions. In
the latter case, different circuits could be generated for the different node sets (each partition forms the input for a
calculation task). Some use cases (which especially process historical data) allow different circuits to be executed
independently of each other. In the NISQ era, this is of particular interest. Due to the hardware limitations, the
width and depth of quantum circuits should be reduced as much as possible [3]. In general, validation of use cases
respectively the aforementioned computationally intensive queries is only possible with small problem instances in the
NISQ era.

4 Experimentation

In this Section, we describe the experiment to test the hybrid architecture. For the development of the first prototype,
we use Python, FastAPI, Docker and Qiskit [18] as implementation technologies. The objective is to verify the
functioning of the reference procedure described in Section 3. To validate the procedure, we resort to well-known
quantum routines. We first consider the following Table 1.

Table 1: Test Data
ID Featurel Feature2 Cluster

Centroid A 0 —-0.5 0.5 blue
Centroid B 1 0.2 -0.2 green
Data Point 2 0.15 —0.15 ?
Data Point 3 —0.45 0.45 ?

This represents some relational data. Each row (tuple) represents a data point that has two properties (called features)
Featurel and Feature2. Each tuple also has a unique ID. The first two tuples are data points, each representing a cluster
centroid. The remaining data points are now to be assigned to a cluster. We aim to achieve this with the support of a
routine or algorithm for distance estimation as used in the Quantum K-Means algorithm [16, 3].

According to the reference procedure in Section 3, we implement the following services and functionalities in the
prototype:
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1. The Decision Service receives a request from the Application for the assignment of data points to clusters and
decides to solve this problem using a Gate-based Quantum Computer. The Application is informed of this.

2. Next, a defined amount of data records is extracted via the Data Service.

3. The Circuit Service creates several circuits. We create a circuit for each pair of data point and centroid. In
this first experiment, we have opted for this simple approach. First, the data provided is encoded. In our case,
these are the features and the ID of the data points. We need the latter for post-processing (cf. step 5). For
the encoding of the features we use the so-called angle embedding [3, 16]. For this we calculate per tuple
the two angles 0 = (Featurel + 1)% and ¢ = (Feature2 4 1)%, whereby angle values between 0 and 7
are allowed. For the encoding of the IDs we use the basis encoding in this example [26]. Next the distance
estimation algorithm follows, which works on the encoded information (cf. Subsection 4.1). Note: For the
encoding of the IDs, we have chosen basis encoding in this first example. Other implicit encoding types (as
in [15]) are also of interest. In addition, the identification of records in a distributed database system requires
more comprehensive identifiers than just an ID as in this example. This was reported in [29].

4. The generated circuits are transmitted to a Gate-based Quantum Computer via the Backend Service and their
execution is triggered. In our case, it is the quantum cloud service from IBM Quantum!', which we used for
our tests.

5. In the final step, the Result Manager checks the execution status and retrieves the result after a circuit has
been executed. The result is then forwarded to the Application. The corresponding cluster of each data point
can be derived from the overall result (comparison of all points with both centroids, cf. Subsection 4.2).
The IDs of these data points are included in the individual results. The Application is responsible for post-
processing the overall result. Based on the IDs, the Table 1 can be supplemented with the information of the
correct cluster. In a relational database, we can imagine that this table is indexed by ID, so that records can
be efficiently identified by ID for an update.

4.1 Circuit

The circuit created in Step 3) can be roughly divided into two sections Encoding and Algorithm. Figure 2 shows
the circuit as an example for a data point centroid pair. The encoding is marked. To encode the features, so called
Us (8, ¢, 0) gates can be used. The parameters of the gates are the previously calculated angles. Pauli X gates can be
used for encoding the IDs. In this case, an ID is represented by a corresponding bit string.

The core of the actual algorithm is the estimation of the distance between a data point and a centroid. The basis of
the algorithm is described in [16]. We supplement it with the encoding of the IDs. The distance is reflected in the
measurement result and how often a particular measurement result occurs. We will deal with this in Subsection 4.2.
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Figure 2: Distance Estimation Algorithm following [16] with additional encoding of the Tuple IDs to utilize them in
post-processing. Parameterized with Data Point ID=3 and Centroid A. Drawn by Qiskit.
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4.2 Results

In this Subsection we review the results, which are shown in the Table 2.

Table 2: Experiment Results

Data Point | Bit sequence | Determined | Calculated
ID for c[2] =1 | Frequency | Frequency
Centroid A 2 110 43 ~ 47
Centroid B 2 - 0 ~ 0.513
Centroid A 3 - 0 ~ 0.061
Centroid B 3 111 43 ~ 46

Each data point (Column 1) is compared to the two centroids to determine the proximity in each case. In quantum-
based distance estimation, the estimated distance between points can be derived from the frequency of a particular state
that we obtain from the measurements. For this purpose, we use the ibmg_gasm_simulator with 1000 shots (number
of repetitions) per centroid/data point comparison. According to the Figure 2, we measure gy — ¢[2], g3 — ¢[1], and
g4 — ¢[0] and obtain in this way a bit sequence representing the measured state (Column 2). ¢[1]¢[0] corresponds to
the binary representation of the ID of the data point. We are interested in the case ¢[2] = 1 (the particular state) and
the frequency of its occurrence (Column 3). In this case, a low frequency correlates with a low estimated distance
between a point and a centroid (if the value for the determined frequency is zero, then it means that the probability
of measuring the particular state is low). Column 4 contains the calculated frequencies (for 1000 repetitions). We
need these to compare the determined values (in Column 3) with predicted values and thus verify the correctness
of the architectural workflow. The calculated probability for c[2] = 11is: 3 — 3| (g1|g2)|? [16, 3]. The calculated
frequencies correspond approximately to the determined values and prove the correct functioning of the architecture
implementation.

Based on the estimated distances, the source table can be supplemented. The supplemented entries are shown in
Table 3.

Table 3: Updated Test Data
ID Featurel

Feature2 Cluster

—0.15
0.45

0.15
—0.45

Data Point 2
Data Point 3

green
blue

The architecture thus allows data from a database to be processed by a quantum algorithm to assign data points to
the correct clusters. The correct generation of the corresponding circuits was ensured by the previously mentioned
comparison of determined and calculated frequencies.

5 Summary and Future Work

In this paper, we have presented a Hybrid Data Management Architecture to enable data exchange between databases
and quantum computers. We have experimentally proven a correct functioning of the architecture. In the experiments,
quantum circuits were created and executed based on relational data. The circuits implement an algorithm for the
distance estimation between data point and centroid and includes the encoding of the classical data. However, the
architecture is not limited to this use case.

Next, we would like to leverage the architecture to implement more data-centric applications. In doing so, we would
like to encode data organized in hierarchical structures (for example, labelled trees for which we have outlined an initial
idea [28], or graphs) in order to execute selected queries on the encoded data using appropriate quantum algorithms.
The implemented routines are also accompanied by time and space complexity analysis to deduce any advantages over
purely classical solutions.
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